计算机科学
任务(项目管理)
人工智能
自然语言处理
语言模型
语言理解
钥匙(锁)
自然语言理解
代表(政治)
领域(数学)
自然语言
计算机安全
管理
数学
政治
政治学
纯数学
法学
经济
作者
Bonan Min,Hayley Ross,Elior Sulem,Amir Pouran Ben Veyseh,Thien Huu Nguyen,Oscar Sainz,Eneko Agirre,Ilana Heintz,Dan Roth
摘要
Large, pre-trained language models (PLMs) such as BERT and GPT have drastically changed the Natural Language Processing (NLP) field. For numerous NLP tasks, approaches leveraging PLMs have achieved state-of-the-art performance. The key idea is to learn a generic, latent representation of language from a generic task once, then share it across disparate NLP tasks. Language modeling serves as the generic task, one with abundant self-supervised text available for extensive training. This article presents the key fundamental concepts of PLM architectures and a comprehensive view of the shift to PLM-driven NLP techniques. It surveys work applying the pre-training then fine-tuning, prompting, and text generation approaches. In addition, it discusses PLM limitations and suggested directions for future research.
科研通智能强力驱动
Strongly Powered by AbleSci AI