Machine learning to predict hemodynamically significant CAD based on traditional risk factors, coronary artery calcium and epicardial fat volume

医学 冠状动脉疾病 内科学 心脏病学 队列 心肌灌注成像 糖尿病 高脂血症 放射科 内分泌学
作者
Wenji Yu,Le Yang,Feifei Zhang,Bao Liu,Yunmei Shi,Jianfeng Wang,Xiaoliang Shao,Yongjun Chen,Xiaoyu Yang,Yuetao Wang
出处
期刊:Journal of Nuclear Cardiology [Springer Nature]
卷期号:30 (6): 2593-2606 被引量:3
标识
DOI:10.1007/s12350-023-03333-0
摘要

We sought to establish an explainable machine learning (ML) model to screen for hemodynamically significant coronary artery disease (CAD) based on traditional risk factors, coronary artery calcium (CAC) and epicardial fat volume (EFV) measured from non-contrast CT scans. 184 symptomatic inpatients who underwent Single Photon Emission Computed Tomography/Myocardial Perfusion Imaging (SPECT/MPI) and Invasive Coronary Angiography (ICA) were enrolled. Clinical and imaging features (CAC and EFV) were collected. Hemodynamically significant CAD was defined when coronary stenosis severity ≥ 50% with a matched reversible perfusion defect in SPECT/MPI. Data was randomly split into a training cohort (70%) on which five-fold cross-validation was done and a test cohort (30%). The normalized training phase was preceded by the selection of features using recursive feature elimination (RFE). Three ML classifiers (LR, SVM, and XGBoost) were used to construct and choose the best predictive model for hemodynamically significant CAD. An explainable approach based on ML and the SHapley Additive exPlanations (SHAP) method was deployed to generate individual explanation of the model's decision. In the training cohort, hemodynamically significant CAD patients had significantly higher age, BMI and EFV, higher proportions of hypertension and CAC comparing with controls (P all < .05). In the test cohorts, hemodynamically significant CAD had significantly higher EFV and higher proportion of CAC. EFV, CAC, diabetes mellitus (DM), hypertension, and hyperlipidemia were the highest ranking features by RFE. XGBoost produced better performance (AUC of 0.88) compared with traditional LR model (AUC of 0.82) and SVM (AUC of 0.82) in the training cohort. Decision Curve Analysis (DCA) demonstrated that XGBoost model had the highest Net Benefit index. Validation of the model also yielded a favorable discriminatory ability with the AUC, sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV) and accuracy of 0.89, 68.0%, 96.8%, 94.4%, 79.0% and 83.9% in the XGBoost model. A XGBoost model based on EFV, CAC, hypertension, DM and hyperlipidemia to assess hemodynamically significant CAD was constructed and validated, which showed favorable predictive value. ML combined with SHAP can offer a transparent explanation of personalized risk prediction, enabling physicians to gain an intuitive understanding of the impact of key features in the model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
3秒前
淋湿巴黎发布了新的文献求助10
9秒前
10秒前
飞雪完成签到,获得积分10
15秒前
科研通AI2S应助拓跋涵易采纳,获得10
15秒前
糟糕的铁锤应助清然采纳,获得20
16秒前
懦弱的安珊完成签到 ,获得积分10
18秒前
蚌埠发布了新的文献求助10
19秒前
仁爱钢笔完成签到 ,获得积分10
23秒前
23秒前
Makta完成签到,获得积分10
23秒前
开朗万天完成签到 ,获得积分10
34秒前
39秒前
44秒前
49秒前
贤惠的面包完成签到 ,获得积分10
51秒前
55秒前
一个左正蹬完成签到,获得积分10
59秒前
lss发布了新的文献求助10
59秒前
医生小白完成签到 ,获得积分10
1分钟前
完美世界应助lss采纳,获得10
1分钟前
iNk应助小欧采纳,获得10
1分钟前
胡巴发布了新的文献求助30
1分钟前
1分钟前
ying完成签到,获得积分10
1分钟前
1分钟前
nenoaowu发布了新的文献求助10
1分钟前
畅快芝麻发布了新的文献求助10
1分钟前
冷酷芝完成签到,获得积分10
1分钟前
Mayer1234088完成签到,获得积分10
1分钟前
星辰大海应助榴莲奶贝采纳,获得10
1分钟前
蚌埠完成签到,获得积分10
1分钟前
朴实初夏完成签到 ,获得积分10
1分钟前
聪明大米发布了新的文献求助10
1分钟前
aaaabc完成签到 ,获得积分10
1分钟前
小二郎应助CMRwatermelon采纳,获得10
1分钟前
1分钟前
雨过天晴发布了新的文献求助20
1分钟前
俊熙C发布了新的文献求助10
1分钟前
高分求助中
Востребованный временем 2500
The Restraining Hand: Captivity for Christ in China 500
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
Encyclopedia of Mental Health Reference Work 300
脑血管病 300
The Unity of the Common Law 300
Eddy current canonical problems (with applications to nondestructive evaluation) 200
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3372015
求助须知:如何正确求助?哪些是违规求助? 2989966
关于积分的说明 8737931
捐赠科研通 2673245
什么是DOI,文献DOI怎么找? 1464401
科研通“疑难数据库(出版商)”最低求助积分说明 677506
邀请新用户注册赠送积分活动 668880