Stiffness Change for Reconfiguration of Inflated Beam Robots

机器人 刚度 执行机构 软机器人 解耦(概率) 变硬 工作区 可控性 工程类 计算机科学 控制理论(社会学) 结构工程 控制工程 人工智能 数学 控制(管理) 应用数学
作者
Brian H. Do,Shuai Wu,Ruike Renee Zhao,Allison M. Okamura
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2307.03247
摘要

Active control of the shape of soft robots is challenging. Despite having an infinite number of passive degrees of freedom (DOFs), soft robots typically only have a few actively controllable DOFs, limited by the number of degrees of actuation (DOAs). The complexity of actuators restricts the number of DOAs that can be incorporated into soft robots. Active shape control is further complicated by the buckling of soft robots under compressive forces; this is particularly challenging for compliant continuum robots due to their long aspect ratios. In this work, we show how variable stiffness can enable shape control of soft robots by addressing these challenges. Dynamically changing the stiffness of sections along a compliant continuum robot can selectively "activate" discrete joints. By changing which joints are activated, the output of a single actuator can be reconfigured to actively control many different joints, thus decoupling the number of controllable DOFs from the number of DOAs. We demonstrate embedded positive pressure layer jamming as a simple method for stiffness change in inflated beam robots, its compatibility with growing robots, and its use as an "activating" technology. We experimentally characterize the stiffness change in a growing inflated beam robot and present finite element models which serve as guides for robot design and fabrication. We fabricate a multi-segment everting inflated beam robot and demonstrate how stiffness change is compatible with growth through tip eversion, enables an increase in workspace, and achieves new actuation patterns not possible without stiffening.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Swiftie发布了新的文献求助10
刚刚
112完成签到,获得积分20
1秒前
搜集达人应助发发采纳,获得10
2秒前
Lazarus_x发布了新的文献求助10
2秒前
白方明发布了新的文献求助10
3秒前
3秒前
3秒前
5秒前
大东子完成签到,获得积分10
5秒前
蔡扬鹏完成签到,获得积分10
5秒前
6秒前
7秒前
7秒前
9秒前
NexusExplorer应助karulko采纳,获得10
9秒前
自由笑晴完成签到 ,获得积分10
10秒前
木叶发布了新的文献求助10
10秒前
11秒前
Strickland完成签到,获得积分20
11秒前
凯蒂发布了新的文献求助10
11秒前
无花果应助咸鱼好翻身采纳,获得10
12秒前
13秒前
13秒前
13秒前
包子妹妹发布了新的文献求助10
13秒前
彭于晏应助谨慎嫣然采纳,获得10
13秒前
完美世界应助甜美的绮菱采纳,获得10
14秒前
14秒前
Strickland发布了新的文献求助10
14秒前
脑洞疼应助yy采纳,获得10
15秒前
愤怒的小甜瓜完成签到,获得积分10
15秒前
Julien发布了新的文献求助10
15秒前
kookery完成签到,获得积分10
15秒前
15秒前
15秒前
。。。完成签到 ,获得积分10
15秒前
ash完成签到,获得积分10
15秒前
李朝富发布了新的文献求助10
17秒前
斯文败类应助扶溪筠采纳,获得10
17秒前
17秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
工业结晶技术 880
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3489857
求助须知:如何正确求助?哪些是违规求助? 3076978
关于积分的说明 9147123
捐赠科研通 2769152
什么是DOI,文献DOI怎么找? 1519630
邀请新用户注册赠送积分活动 704069
科研通“疑难数据库(出版商)”最低求助积分说明 702084