组合数学
基础(线性代数)
猜想
国家(计算机科学)
物理
Dirac(视频压缩格式)
傅里叶变换
图表
基质(化学分析)
素数(序理论)
数学物理
量子力学
数学
几何学
统计
材料科学
中微子
复合材料
算法
作者
Ying‐Hui Yang,Bingbing Zhang,Xiaoli Wang,Shi-Jiao Geng,Pei‐Ying Chen
出处
期刊:Entropy
[MDPI AG]
日期:2023-07-17
卷期号:25 (7): 1075-1075
摘要
In this paper, we investigate an uncertainty diagram and Kirkwood–Dirac (KD) nonclassicality based on discrete Fourier transform (DFT) in a d-dimensional system. We first consider the uncertainty diagram of the DFT matrix, which is a transition matrix from basis A to basis B. Here, the bases A, B are not necessarily completely incompatible. We show that for the uncertainty diagram of the DFT matrix, there is no “hole” in the region of the (nA,nB) plane above and on the line nA+nB=d+1. Then, we present where the holes are in the region strictly below the line and above the hyperbola nAnB=d. Finally, we provide an alternative proof of the conjecture about KD nonclassicality based on DFT.
科研通智能强力驱动
Strongly Powered by AbleSci AI