Supporting students’ self-regulated learning in online learning using artificial intelligence applications

自主学习 元认知 背景(考古学) 探索性研究 心理学 数学教育 感知 计算机科学 认知 人类学 生物 社会学 古生物学 神经科学
作者
Sung-Hee Jin,Kowoon Im,Mina Yoo,Ido Roll,Kyoungwon Seo
出处
期刊:International journal of educational technology in higher education [Springer Nature]
卷期号:20 (1) 被引量:134
标识
DOI:10.1186/s41239-023-00406-5
摘要

Abstract Self-regulated learning (SRL) is crucial for helping students attain high academic performance and achieve their learning objectives in the online learning context. However, learners often face challenges in properly applying SRL in online learning environments. Recent developments in artificial intelligence (AI) applications have shown promise in supporting learners’ self-regulation in online learning by measuring and augmenting SRL, but research in this area is still in its early stages. The purpose of this study is to explore students’ perceptions of the use of AI applications to support SRL and to identify the pedagogical and psychological aspects that they perceive as necessary for effective utilization of those AI applications. To explore this, a speed dating method using storyboards was employed as an exploratory design method. The study involved the development of 10 AI application storyboards to identify the phases and areas of SRL, and semi-structured interviews were conducted with 16 university students from various majors. The results indicated that learners perceived AI applications as useful for supporting metacognitive, cognitive, and behavioral regulation across different SRL areas, but not for regulating motivation. Next, regarding the use of AI applications to support SRL, learners requested consideration of three pedagogical and psychological aspects: learner identity, learner activeness, and learner position. The findings of this study offer practical implications for the design of AI applications in online learning, with the aim of supporting students’ SRL.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
科研通AI5应助Tcell采纳,获得10
1秒前
科研通AI5应助XR采纳,获得10
2秒前
打雷要下雨关注了科研通微信公众号
2秒前
听风完成签到 ,获得积分10
2秒前
3秒前
xx发布了新的文献求助10
3秒前
3秒前
4秒前
海海完成签到,获得积分10
4秒前
4秒前
5秒前
5秒前
潇潇雨歇完成签到,获得积分10
5秒前
林安笙完成签到,获得积分10
5秒前
ZZY发布了新的文献求助10
7秒前
搜集达人应助月下独酌采纳,获得10
8秒前
114koi完成签到,获得积分10
8秒前
8秒前
Jianyu发布了新的文献求助10
9秒前
霖lin发布了新的文献求助10
9秒前
9秒前
海海发布了新的文献求助10
10秒前
10秒前
10秒前
斯文明杰发布了新的文献求助10
11秒前
汤泡泡完成签到,获得积分10
11秒前
xx完成签到,获得积分20
12秒前
浮游应助友好的小鸽子采纳,获得10
13秒前
13秒前
搜集达人应助CDX采纳,获得10
13秒前
erfc发布了新的文献求助10
13秒前
14秒前
mjq完成签到,获得积分10
14秒前
Nana1000发布了新的文献求助10
14秒前
量子星尘发布了新的文献求助150
15秒前
16秒前
科研通AI5应助零零二采纳,获得10
17秒前
17秒前
铃科百合子完成签到,获得积分10
17秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
AASHTO LRFD Bridge Design Specifications (10th Edition) with 2025 Errata 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5125340
求助须知:如何正确求助?哪些是违规求助? 4329194
关于积分的说明 13490551
捐赠科研通 4164032
什么是DOI,文献DOI怎么找? 2282685
邀请新用户注册赠送积分活动 1283829
关于科研通互助平台的介绍 1223099