Supporting students’ self-regulated learning in online learning using artificial intelligence applications

自主学习 元认知 背景(考古学) 探索性研究 心理学 数学教育 感知 计算机科学 认知 古生物学 神经科学 社会学 人类学 生物
作者
Sung-Hee Jin,Kowoon Im,Mina Yoo,Ido Roll,Kyoungwon Seo
出处
期刊:International journal of educational technology in higher education [Springer Nature]
卷期号:20 (1) 被引量:78
标识
DOI:10.1186/s41239-023-00406-5
摘要

Abstract Self-regulated learning (SRL) is crucial for helping students attain high academic performance and achieve their learning objectives in the online learning context. However, learners often face challenges in properly applying SRL in online learning environments. Recent developments in artificial intelligence (AI) applications have shown promise in supporting learners’ self-regulation in online learning by measuring and augmenting SRL, but research in this area is still in its early stages. The purpose of this study is to explore students’ perceptions of the use of AI applications to support SRL and to identify the pedagogical and psychological aspects that they perceive as necessary for effective utilization of those AI applications. To explore this, a speed dating method using storyboards was employed as an exploratory design method. The study involved the development of 10 AI application storyboards to identify the phases and areas of SRL, and semi-structured interviews were conducted with 16 university students from various majors. The results indicated that learners perceived AI applications as useful for supporting metacognitive, cognitive, and behavioral regulation across different SRL areas, but not for regulating motivation. Next, regarding the use of AI applications to support SRL, learners requested consideration of three pedagogical and psychological aspects: learner identity, learner activeness, and learner position. The findings of this study offer practical implications for the design of AI applications in online learning, with the aim of supporting students’ SRL.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wym发布了新的文献求助30
2秒前
传奇3应助风中的爆米花采纳,获得10
3秒前
3秒前
CipherSage应助菜菜泽采纳,获得10
4秒前
阿洋完成签到,获得积分20
4秒前
阿洋发布了新的文献求助10
8秒前
上官可可发布了新的文献求助10
8秒前
wy完成签到,获得积分10
8秒前
duyitao关注了科研通微信公众号
9秒前
10秒前
Frank完成签到,获得积分10
10秒前
guard发布了新的文献求助10
10秒前
U9A发布了新的文献求助10
11秒前
12秒前
hh完成签到,获得积分10
13秒前
hony完成签到,获得积分10
14秒前
15秒前
传奇3应助科研通管家采纳,获得10
15秒前
Akim应助科研通管家采纳,获得10
15秒前
SYLH应助科研通管家采纳,获得20
16秒前
ED应助科研通管家采纳,获得10
16秒前
天天快乐应助科研通管家采纳,获得10
16秒前
情怀应助科研通管家采纳,获得10
16秒前
打打应助科研通管家采纳,获得10
16秒前
英姑应助科研通管家采纳,获得10
16秒前
Ricey应助科研通管家采纳,获得10
16秒前
Akim应助科研通管家采纳,获得10
16秒前
henxiangai应助科研通管家采纳,获得30
16秒前
李健应助科研通管家采纳,获得10
16秒前
科目三应助科研通管家采纳,获得10
16秒前
16秒前
16秒前
17秒前
ED应助科研通管家采纳,获得10
17秒前
17秒前
17秒前
17秒前
17秒前
奋斗的延恶完成签到,获得积分10
17秒前
小敏哼应助幸福大白采纳,获得10
19秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3993569
求助须知:如何正确求助?哪些是违规求助? 3534299
关于积分的说明 11265160
捐赠科研通 3274074
什么是DOI,文献DOI怎么找? 1806303
邀请新用户注册赠送积分活动 883118
科研通“疑难数据库(出版商)”最低求助积分说明 809712