Supporting students’ self-regulated learning in online learning using artificial intelligence applications

自主学习 元认知 背景(考古学) 探索性研究 心理学 数学教育 感知 计算机科学 认知 人类学 生物 社会学 古生物学 神经科学
作者
Sung-Hee Jin,Kowoon Im,Mina Yoo,Ido Roll,Kyoungwon Seo
出处
期刊:International journal of educational technology in higher education [Springer Nature]
卷期号:20 (1) 被引量:134
标识
DOI:10.1186/s41239-023-00406-5
摘要

Abstract Self-regulated learning (SRL) is crucial for helping students attain high academic performance and achieve their learning objectives in the online learning context. However, learners often face challenges in properly applying SRL in online learning environments. Recent developments in artificial intelligence (AI) applications have shown promise in supporting learners’ self-regulation in online learning by measuring and augmenting SRL, but research in this area is still in its early stages. The purpose of this study is to explore students’ perceptions of the use of AI applications to support SRL and to identify the pedagogical and psychological aspects that they perceive as necessary for effective utilization of those AI applications. To explore this, a speed dating method using storyboards was employed as an exploratory design method. The study involved the development of 10 AI application storyboards to identify the phases and areas of SRL, and semi-structured interviews were conducted with 16 university students from various majors. The results indicated that learners perceived AI applications as useful for supporting metacognitive, cognitive, and behavioral regulation across different SRL areas, but not for regulating motivation. Next, regarding the use of AI applications to support SRL, learners requested consideration of three pedagogical and psychological aspects: learner identity, learner activeness, and learner position. The findings of this study offer practical implications for the design of AI applications in online learning, with the aim of supporting students’ SRL.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
jignjing发布了新的文献求助10
1秒前
陆菱柒发布了新的文献求助10
2秒前
娃哈哈发布了新的文献求助10
4秒前
爸爸_爸爸_帮帮我完成签到,获得积分20
4秒前
6秒前
深情安青应助vsbsjj采纳,获得10
7秒前
boging完成签到,获得积分10
7秒前
9秒前
9秒前
正义的伙伴完成签到,获得积分10
10秒前
文艺醉波发布了新的文献求助10
11秒前
陆菱柒完成签到,获得积分10
12秒前
12秒前
Kannan发布了新的文献求助10
12秒前
lavender发布了新的文献求助10
13秒前
曾泳钧完成签到,获得积分10
13秒前
小情绪发布了新的文献求助10
13秒前
Frank发布了新的文献求助30
13秒前
14秒前
15秒前
111完成签到,获得积分10
17秒前
希希发布了新的文献求助10
17秒前
从容的钢铁侠完成签到,获得积分20
19秒前
在水一方应助lijiauyi1994采纳,获得10
19秒前
多多发SCI发布了新的文献求助30
19秒前
量子星尘发布了新的文献求助10
20秒前
小小发布了新的文献求助10
22秒前
22秒前
22秒前
23秒前
英姑应助vsbsjj采纳,获得10
23秒前
chong0919完成签到,获得积分10
23秒前
memo应助默默的巧蕊采纳,获得10
24秒前
26秒前
28秒前
端庄的友瑶完成签到,获得积分10
29秒前
31秒前
十二完成签到,获得积分10
32秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 901
Item Response Theory 600
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5425403
求助须知:如何正确求助?哪些是违规求助? 4539499
关于积分的说明 14168184
捐赠科研通 4457031
什么是DOI,文献DOI怎么找? 2444414
邀请新用户注册赠送积分活动 1435321
关于科研通互助平台的介绍 1412740