Print-Camera Resistant Image Watermarking With Deep Noise Simulation and Constrained Learning

数字水印 计算机科学 人工智能 计算机视觉 计算机图形学(图像) 噪音(视频) 图像(数学)
作者
Chuan Qin,Xiaomeng Li,Zhenyi Zhang,Fengyong Li,Xinpeng Zhang,Guorui Feng
出处
期刊:IEEE Transactions on Multimedia [Institute of Electrical and Electronics Engineers]
卷期号:26: 2164-2177 被引量:6
标识
DOI:10.1109/tmm.2023.3293272
摘要

In this article, an effective print-camera (P-C) resistant image watermarking scheme is proposed. To achieve watermark robustness, most of existing works try to simulate P-C noise by a sophisticated math model. However, the diversity of P-C noises in the real world is ignored, and the watermarked image may not attain a good balance between high robustness and low distortion. To address the problem, we construct an efficient end-to-end network architecture for watermark embedding and extraction. To be specific, a deep noise simulation network (NSN) is designed to simulate the fusion process of real P-C noises, which can help to generate high-robust watermarked image. Also, a multitask loss function based on just-noticeable-difference (JND) is proposed to conduct constrained learning for residual image containing watermark information, thus, the distortion of generated watermarked image can be significantly reduced. Experimental results show that our scheme can achieve high robustness against P-C process while maintaining a satisfactory watermark capacity and visual quality of watermarked image.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
愉快盼曼发布了新的文献求助10
3秒前
4秒前
4秒前
4秒前
nemo发布了新的文献求助10
4秒前
学术蝗虫完成签到,获得积分10
4秒前
justin完成签到,获得积分10
5秒前
西瓜啵啵完成签到,获得积分10
7秒前
小周完成签到,获得积分10
7秒前
Louki完成签到 ,获得积分10
7秒前
温暖的颜演完成签到 ,获得积分10
8秒前
yudandan@CJLU发布了新的文献求助10
9秒前
科研小民工应助_呱_采纳,获得50
9秒前
愉快盼曼完成签到,获得积分20
9秒前
研友_VZG7GZ应助小狗同志006采纳,获得10
10秒前
123完成签到,获得积分10
10秒前
13679165979发布了新的文献求助10
11秒前
温暖的钻石完成签到,获得积分10
11秒前
科研通AI5应助赖道之采纳,获得10
11秒前
12秒前
苏卿应助Eric采纳,获得10
12秒前
思源应助hhzz采纳,获得10
13秒前
红红完成签到,获得积分10
16秒前
瑶一瑶发布了新的文献求助10
16秒前
NexusExplorer应助刘鹏宇采纳,获得10
16秒前
roselau完成签到,获得积分10
16秒前
yudandan@CJLU完成签到,获得积分10
17秒前
17秒前
半山完成签到,获得积分10
21秒前
吹泡泡的红豆完成签到 ,获得积分10
22秒前
研友_89eBO8完成签到 ,获得积分10
22秒前
隐形曼青应助ZeJ采纳,获得10
22秒前
22秒前
隐形曼青应助温暖的钻石采纳,获得10
23秒前
Khr1stINK发布了新的文献求助10
24秒前
123cxj发布了新的文献求助10
25秒前
星辰大海应助红红采纳,获得10
25秒前
sweetbearm应助小周采纳,获得10
26秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808