胶结(地质)
瓦片
降水
碳酸钙
陶瓷
稀释
碳酸盐
材料科学
化学
矿物学
复合材料
冶金
水泥
物理
气象学
热力学
作者
Emma Jane Horn,Robert J. Huddy,D.G. Randall
标识
DOI:10.1016/j.scitotenv.2023.165050
摘要
Using the biomimetic process known as microbially induced calcium carbonate precipitation (MICP), the growth of bio-tiles was investigated as an alternative to conventionally fired ceramic tiles which require operating temperatures above 1000 °C, therefore adding to global carbon emissions. The ureolytic activity of Sporosarcina pasteurii was controlled by centrifuging and dilution with fresh yeast extract media. The bio-tiles were grown using a novel submersion method in which custom moulds were placed in exact positions within the bio-reactor and each was mixed individually from beneath. Five parameters were optimised to achieve bio-tiles (dimensions of 100 × 100 × 10 mm) of breaking strength comparable to conventional tiles of equivalent thickness. By optimising ureolytic activity (4.0 mmol/L·min), the cementation solution concentration (0.3 M), the particle size distribution (D10 = 312 μm; D50 = 469 μm), the volume of cementation solution, as well as the addition of supplemental magnesium (0.3 M), bio-tiles with a breaking strength 637 N ± 60 N and a modulus of rupture of 13.0 N/mm2 ± 2.3 N were produced. These parameters exceed the conventional standards of breaking strength and modulus of rupture of 600 N and 8 N/mm2, respectively, the standards set for tiles with a water absorption above 10 %. This is also the first time that an optimum CaCO3 precipitation rate constant has been identified (0.11-0.18 day-1) for producing bio-tiles that meet the strength properties of conventional extruded ceramic tiles. The tile manufacturing technique described in this study is easy to operate and scale since multiple bio-tiles can be produced in larger cementation tanks. This natural tile making process also benefits the environment by operating at room temperature.
科研通智能强力驱动
Strongly Powered by AbleSci AI