亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Machine learning framework for estimating CO2 adsorption on coalbed for carbon capture, utilization, and storage applications

吸附 人工神经网络 煤层气 均方误差 极限学习机 环境科学 石油工程 煤矿开采 材料科学 计算机科学 工艺工程 数学 人工智能 统计 化学 地质学 废物管理 工程类 有机化学
作者
Amer Alanazi,Ahmed Farid Ibrahim,Saleh Bawazer,Salaheldin Elkatatny,Hussein Hoteit
出处
期刊:International Journal of Coal Geology [Elsevier BV]
卷期号:275: 104297-104297 被引量:39
标识
DOI:10.1016/j.coal.2023.104297
摘要

For the purpose of carbon capture, utilization, and storage, carbon dioxide (CO2) injection in coal formations can enhance methane recovery and mitigate climate change. However, measuring CO2 adsorption isotherms using experimental or mathematical models can be time-consuming, expensive, and inaccurate. Thus, this study presents a machine-learning framework that predicts CO2 adsorption in coal formations based on various coal properties and testing conditions. Machine-learning (ML) framework was applied using a dataset of 1,064 points collected for different coal samples at different operating conditions to predict the CO2 adsorption in coal surface. The ML techniques include decision tree regression (DT), random forests (RF), gradient boost regression (GBR), K-nearest neighbor (KNN), artificial neural network (ANN), function network (FN), and adaptive neuro-fuzzy inference system (ANFIS). The applied framework determines CO2 adsorption as a function of coal's physical and chemical properties (moisture, ash, volatile matter, and fixed carbon content), the vitrinite reflectance of the coal samples, and testing conditions (pressure and temperature). Classical statical tools such as R2, root mean square error (RMSE), and average absolute percentage error (AAPE) were used to evaluate the model's performance analysis. The results demonstrated the ability to determine CO2 adsorption for varying coal types and at different temperature and pressure conditions. The statistical measures suggested that RF, GBR, and KNN are very reliable ML models, with RF being the best. At low operating pressure (P < 4 MPa), CO2 adsorption is impacted by any pressure changes, while it is stabilized at high-pressure values and becomes more dependent on the rock properties at high operating pressure (P > 4 MPa). The introduced ML framework offers a technique to evaluate the capability of different algorithms and accurately estimate CO2 adsorption without the requirement of additional experimental measurements or complicated mathematical techniques.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lanxinge完成签到 ,获得积分10
26秒前
玄音完成签到,获得积分10
1分钟前
汉堡包应助通义千问采纳,获得10
1分钟前
隐形曼青应助小米辣采纳,获得30
2分钟前
3分钟前
通义千问发布了新的文献求助10
3分钟前
柔弱藏今发布了新的文献求助10
3分钟前
小米辣完成签到,获得积分10
3分钟前
3分钟前
吃了就会胖完成签到 ,获得积分10
3分钟前
小米辣发布了新的文献求助30
3分钟前
dream完成签到 ,获得积分10
3分钟前
4分钟前
4分钟前
丫子天空发布了新的文献求助10
4分钟前
4分钟前
lzxbarry应助andrele采纳,获得30
4分钟前
燕子完成签到 ,获得积分10
5分钟前
6分钟前
6分钟前
呆萌的鼠标完成签到 ,获得积分0
6分钟前
6分钟前
似水无痕完成签到,获得积分10
6分钟前
Anto完成签到,获得积分10
6分钟前
kuoping完成签到,获得积分0
6分钟前
李健应助科研通管家采纳,获得10
6分钟前
丫子天空完成签到,获得积分20
6分钟前
QCB完成签到 ,获得积分10
7分钟前
wodetaiyangLLL完成签到 ,获得积分10
7分钟前
科研通AI5应助彭日晓采纳,获得10
7分钟前
ZHANG完成签到 ,获得积分10
8分钟前
tenta完成签到,获得积分10
8分钟前
8分钟前
8分钟前
8分钟前
千里草完成签到,获得积分10
8分钟前
彭日晓发布了新的文献求助10
8分钟前
significant发布了新的文献求助10
8分钟前
9分钟前
9分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4569068
求助须知:如何正确求助?哪些是违规求助? 3991392
关于积分的说明 12355756
捐赠科研通 3663569
什么是DOI,文献DOI怎么找? 2019007
邀请新用户注册赠送积分活动 1053435
科研通“疑难数据库(出版商)”最低求助积分说明 940978