Machine learning framework for estimating CO2 adsorption on coalbed for carbon capture, utilization, and storage applications

吸附 人工神经网络 煤层气 均方误差 极限学习机 环境科学 石油工程 煤矿开采 材料科学 计算机科学 工艺工程 数学 人工智能 统计 化学 地质学 废物管理 工程类 有机化学
作者
Amer Alanazi,Ahmed Farid Ibrahim,Saleh Bawazer,Salaheldin Elkatatny,Hussein Hoteit
出处
期刊:International Journal of Coal Geology [Elsevier BV]
卷期号:275: 104297-104297 被引量:3
标识
DOI:10.1016/j.coal.2023.104297
摘要

For the purpose of carbon capture, utilization, and storage, carbon dioxide (CO2) injection in coal formations can enhance methane recovery and mitigate climate change. However, measuring CO2 adsorption isotherms using experimental or mathematical models can be time-consuming, expensive, and inaccurate. Thus, this study presents a machine-learning framework that predicts CO2 adsorption in coal formations based on various coal properties and testing conditions. Machine-learning (ML) framework was applied using a dataset of 1,064 points collected for different coal samples at different operating conditions to predict the CO2 adsorption in coal surface. The ML techniques include decision tree regression (DT), random forests (RF), gradient boost regression (GBR), K-nearest neighbor (KNN), artificial neural network (ANN), function network (FN), and adaptive neuro-fuzzy inference system (ANFIS). The applied framework determines CO2 adsorption as a function of coal's physical and chemical properties (moisture, ash, volatile matter, and fixed carbon content), the vitrinite reflectance of the coal samples, and testing conditions (pressure and temperature). Classical statical tools such as R2, root mean square error (RMSE), and average absolute percentage error (AAPE) were used to evaluate the model's performance analysis. The results demonstrated the ability to determine CO2 adsorption for varying coal types and at different temperature and pressure conditions. The statistical measures suggested that RF, GBR, and KNN are very reliable ML models, with RF being the best. At low operating pressure (P < 4 MPa), CO2 adsorption is impacted by any pressure changes, while it is stabilized at high-pressure values and becomes more dependent on the rock properties at high operating pressure (P > 4 MPa). The introduced ML framework offers a technique to evaluate the capability of different algorithms and accurately estimate CO2 adsorption without the requirement of additional experimental measurements or complicated mathematical techniques.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
3秒前
科目三应助萤火采纳,获得10
3秒前
非盈发布了新的文献求助10
4秒前
霸气的小兔子完成签到,获得积分10
4秒前
烟花应助q792309106采纳,获得10
5秒前
GibsonYu完成签到,获得积分10
6秒前
Lier发布了新的文献求助10
9秒前
11秒前
13秒前
凉风送信完成签到,获得积分10
13秒前
可爱的函函应助漂亮幻莲采纳,获得10
15秒前
Asahi完成签到 ,获得积分10
16秒前
心想事成完成签到,获得积分10
18秒前
chrysophoron发布了新的文献求助10
18秒前
21秒前
罗亚亚完成签到,获得积分10
22秒前
22秒前
labern发布了新的文献求助30
24秒前
zkz完成签到,获得积分10
25秒前
青城昊发布了新的文献求助10
27秒前
orixero应助56565采纳,获得10
28秒前
天天快乐应助哒哒哒采纳,获得10
29秒前
29秒前
leoan完成签到,获得积分10
30秒前
31秒前
yx_cheng应助yyy0820采纳,获得30
32秒前
33秒前
guogangyouming完成签到,获得积分10
34秒前
核桃发布了新的文献求助10
35秒前
明天见发布了新的文献求助10
36秒前
Lier完成签到 ,获得积分10
36秒前
青城昊完成签到,获得积分10
37秒前
38秒前
彭于晏应助好滴捏采纳,获得10
40秒前
漂亮幻莲发布了新的文献求助10
40秒前
42秒前
上官若男应助崔崔采纳,获得10
43秒前
墨墨完成签到,获得积分10
43秒前
77完成签到 ,获得积分10
44秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3993569
求助须知:如何正确求助?哪些是违规求助? 3534299
关于积分的说明 11265160
捐赠科研通 3274074
什么是DOI,文献DOI怎么找? 1806303
邀请新用户注册赠送积分活动 883118
科研通“疑难数据库(出版商)”最低求助积分说明 809712