已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Machine learning framework for estimating CO2 adsorption on coalbed for carbon capture, utilization, and storage applications

吸附 人工神经网络 煤层气 均方误差 极限学习机 环境科学 石油工程 煤矿开采 材料科学 计算机科学 工艺工程 数学 人工智能 统计 化学 地质学 废物管理 工程类 有机化学
作者
Amer Alanazi,Ahmed Farid Ibrahim,Saleh Bawazer,Salaheldin Elkatatny,Hussein Hoteit
出处
期刊:International Journal of Coal Geology [Elsevier]
卷期号:275: 104297-104297 被引量:3
标识
DOI:10.1016/j.coal.2023.104297
摘要

For the purpose of carbon capture, utilization, and storage, carbon dioxide (CO2) injection in coal formations can enhance methane recovery and mitigate climate change. However, measuring CO2 adsorption isotherms using experimental or mathematical models can be time-consuming, expensive, and inaccurate. Thus, this study presents a machine-learning framework that predicts CO2 adsorption in coal formations based on various coal properties and testing conditions. Machine-learning (ML) framework was applied using a dataset of 1,064 points collected for different coal samples at different operating conditions to predict the CO2 adsorption in coal surface. The ML techniques include decision tree regression (DT), random forests (RF), gradient boost regression (GBR), K-nearest neighbor (KNN), artificial neural network (ANN), function network (FN), and adaptive neuro-fuzzy inference system (ANFIS). The applied framework determines CO2 adsorption as a function of coal's physical and chemical properties (moisture, ash, volatile matter, and fixed carbon content), the vitrinite reflectance of the coal samples, and testing conditions (pressure and temperature). Classical statical tools such as R2, root mean square error (RMSE), and average absolute percentage error (AAPE) were used to evaluate the model's performance analysis. The results demonstrated the ability to determine CO2 adsorption for varying coal types and at different temperature and pressure conditions. The statistical measures suggested that RF, GBR, and KNN are very reliable ML models, with RF being the best. At low operating pressure (P < 4 MPa), CO2 adsorption is impacted by any pressure changes, while it is stabilized at high-pressure values and becomes more dependent on the rock properties at high operating pressure (P > 4 MPa). The introduced ML framework offers a technique to evaluate the capability of different algorithms and accurately estimate CO2 adsorption without the requirement of additional experimental measurements or complicated mathematical techniques.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
井小浩完成签到 ,获得积分10
刚刚
insomnia417完成签到,获得积分0
刚刚
刚刚
远方完成签到,获得积分10
1秒前
科研通AI2S应助落尘采纳,获得10
1秒前
H喜欢老霉完成签到,获得积分10
2秒前
乐乐应助neechine采纳,获得10
3秒前
感动白开水完成签到,获得积分10
3秒前
leslie完成签到 ,获得积分10
3秒前
6秒前
7秒前
7秒前
思源应助H喜欢老霉采纳,获得10
8秒前
俗人发布了新的文献求助10
10秒前
孙笑川258完成签到 ,获得积分10
11秒前
酷波er应助微笑的砖头采纳,获得10
11秒前
12秒前
summer发布了新的文献求助10
12秒前
帝蒼完成签到,获得积分10
13秒前
侠客完成签到 ,获得积分10
13秒前
动听的飞松完成签到 ,获得积分10
13秒前
一只熊发布了新的文献求助10
13秒前
蔓越莓完成签到,获得积分10
14秒前
16秒前
无聊的月饼完成签到 ,获得积分10
18秒前
酸番茄完成签到 ,获得积分10
18秒前
王者归来完成签到,获得积分10
18秒前
Lexi完成签到 ,获得积分10
19秒前
ATTENTION完成签到,获得积分10
19秒前
斯文败类应助俗人采纳,获得10
21秒前
babe完成签到,获得积分20
21秒前
彪壮的青亦完成签到,获得积分10
22秒前
万能图书馆应助AssOnFire采纳,获得10
22秒前
FashionBoy应助XLT采纳,获得10
23秒前
小星星完成签到 ,获得积分10
23秒前
小虎完成签到,获得积分10
23秒前
细草微风岸完成签到 ,获得积分10
24秒前
24秒前
火星的雪完成签到 ,获得积分10
25秒前
顺利山柏完成签到 ,获得积分10
25秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Semiconductor Process Reliability in Practice 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 600
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3234449
求助须知:如何正确求助?哪些是违规求助? 2880760
关于积分的说明 8216976
捐赠科研通 2548347
什么是DOI,文献DOI怎么找? 1377713
科研通“疑难数据库(出版商)”最低求助积分说明 647944
邀请新用户注册赠送积分活动 623304