Machine learning framework for estimating CO2 adsorption on coalbed for carbon capture, utilization, and storage applications

吸附 人工神经网络 煤层气 均方误差 极限学习机 环境科学 石油工程 煤矿开采 材料科学 计算机科学 工艺工程 数学 人工智能 统计 化学 地质学 废物管理 工程类 有机化学
作者
Amer Alanazi,Ahmed Farid Ibrahim,Saleh Bawazer,Salaheldin Elkatatny,Hussein Hoteit
出处
期刊:International Journal of Coal Geology [Elsevier]
卷期号:275: 104297-104297 被引量:45
标识
DOI:10.1016/j.coal.2023.104297
摘要

For the purpose of carbon capture, utilization, and storage, carbon dioxide (CO2) injection in coal formations can enhance methane recovery and mitigate climate change. However, measuring CO2 adsorption isotherms using experimental or mathematical models can be time-consuming, expensive, and inaccurate. Thus, this study presents a machine-learning framework that predicts CO2 adsorption in coal formations based on various coal properties and testing conditions. Machine-learning (ML) framework was applied using a dataset of 1,064 points collected for different coal samples at different operating conditions to predict the CO2 adsorption in coal surface. The ML techniques include decision tree regression (DT), random forests (RF), gradient boost regression (GBR), K-nearest neighbor (KNN), artificial neural network (ANN), function network (FN), and adaptive neuro-fuzzy inference system (ANFIS). The applied framework determines CO2 adsorption as a function of coal's physical and chemical properties (moisture, ash, volatile matter, and fixed carbon content), the vitrinite reflectance of the coal samples, and testing conditions (pressure and temperature). Classical statical tools such as R2, root mean square error (RMSE), and average absolute percentage error (AAPE) were used to evaluate the model's performance analysis. The results demonstrated the ability to determine CO2 adsorption for varying coal types and at different temperature and pressure conditions. The statistical measures suggested that RF, GBR, and KNN are very reliable ML models, with RF being the best. At low operating pressure (P < 4 MPa), CO2 adsorption is impacted by any pressure changes, while it is stabilized at high-pressure values and becomes more dependent on the rock properties at high operating pressure (P > 4 MPa). The introduced ML framework offers a technique to evaluate the capability of different algorithms and accurately estimate CO2 adsorption without the requirement of additional experimental measurements or complicated mathematical techniques.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
文静的绿兰完成签到,获得积分10
1秒前
1秒前
1秒前
1秒前
1秒前
2秒前
2秒前
真龙狂婿完成签到,获得积分10
2秒前
彭于晏应助BruceQ采纳,获得10
3秒前
4秒前
lei完成签到,获得积分20
4秒前
SciGPT应助exile516采纳,获得10
4秒前
4秒前
4秒前
Haijiao发布了新的文献求助10
5秒前
蓁蓁发布了新的文献求助10
5秒前
陌路发布了新的文献求助10
5秒前
ding应助张张爱科研采纳,获得10
5秒前
xilingang发布了新的文献求助10
5秒前
冥香发布了新的文献求助10
5秒前
zzb发布了新的文献求助10
5秒前
NICAI应助科研通管家采纳,获得10
5秒前
CodeCraft应助科研通管家采纳,获得10
5秒前
zhong完成签到 ,获得积分20
5秒前
NICAI应助科研通管家采纳,获得10
6秒前
6秒前
香蕉诗蕊应助科研通管家采纳,获得10
6秒前
星辰大海应助科研通管家采纳,获得10
6秒前
风中寻凝发布了新的文献求助10
6秒前
NICAI应助科研通管家采纳,获得10
6秒前
情怀应助科研通管家采纳,获得10
6秒前
6秒前
香蕉诗蕊应助科研通管家采纳,获得10
6秒前
氧化铝发布了新的文献求助10
6秒前
桐桐应助啦啦啦采纳,获得10
6秒前
6秒前
在水一方应助科研通管家采纳,获得10
6秒前
领导范儿应助科研通管家采纳,获得10
6秒前
李健应助科研通管家采纳,获得30
6秒前
浮游应助科研通管家采纳,获得10
6秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5552039
求助须知:如何正确求助?哪些是违规求助? 4636877
关于积分的说明 14646248
捐赠科研通 4578705
什么是DOI,文献DOI怎么找? 2511074
邀请新用户注册赠送积分活动 1486286
关于科研通互助平台的介绍 1457502