Machine learning framework for estimating CO2 adsorption on coalbed for carbon capture, utilization, and storage applications

吸附 人工神经网络 煤层气 均方误差 极限学习机 环境科学 石油工程 煤矿开采 材料科学 计算机科学 工艺工程 数学 人工智能 统计 化学 地质学 废物管理 工程类 有机化学
作者
Amer Alanazi,Ahmed Farid Ibrahim,Saleh Bawazer,Salaheldin Elkatatny,Hussein Hoteit
出处
期刊:International Journal of Coal Geology [Elsevier]
卷期号:275: 104297-104297 被引量:3
标识
DOI:10.1016/j.coal.2023.104297
摘要

For the purpose of carbon capture, utilization, and storage, carbon dioxide (CO2) injection in coal formations can enhance methane recovery and mitigate climate change. However, measuring CO2 adsorption isotherms using experimental or mathematical models can be time-consuming, expensive, and inaccurate. Thus, this study presents a machine-learning framework that predicts CO2 adsorption in coal formations based on various coal properties and testing conditions. Machine-learning (ML) framework was applied using a dataset of 1,064 points collected for different coal samples at different operating conditions to predict the CO2 adsorption in coal surface. The ML techniques include decision tree regression (DT), random forests (RF), gradient boost regression (GBR), K-nearest neighbor (KNN), artificial neural network (ANN), function network (FN), and adaptive neuro-fuzzy inference system (ANFIS). The applied framework determines CO2 adsorption as a function of coal's physical and chemical properties (moisture, ash, volatile matter, and fixed carbon content), the vitrinite reflectance of the coal samples, and testing conditions (pressure and temperature). Classical statical tools such as R2, root mean square error (RMSE), and average absolute percentage error (AAPE) were used to evaluate the model's performance analysis. The results demonstrated the ability to determine CO2 adsorption for varying coal types and at different temperature and pressure conditions. The statistical measures suggested that RF, GBR, and KNN are very reliable ML models, with RF being the best. At low operating pressure (P < 4 MPa), CO2 adsorption is impacted by any pressure changes, while it is stabilized at high-pressure values and becomes more dependent on the rock properties at high operating pressure (P > 4 MPa). The introduced ML framework offers a technique to evaluate the capability of different algorithms and accurately estimate CO2 adsorption without the requirement of additional experimental measurements or complicated mathematical techniques.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
_呱_应助楼台杏花琴弦采纳,获得50
2秒前
咸鱼一号发布了新的文献求助10
2秒前
正经俠发布了新的文献求助10
2秒前
李志远完成签到,获得积分10
3秒前
ghh发布了新的文献求助10
3秒前
4秒前
77paocai完成签到,获得积分10
5秒前
CCL完成签到,获得积分10
6秒前
明亮的绫完成签到 ,获得积分10
6秒前
祖诗云完成签到,获得积分0
7秒前
jiewen发布了新的文献求助10
9秒前
9秒前
Oz完成签到,获得积分10
9秒前
zhukun发布了新的文献求助10
10秒前
10秒前
13秒前
香蕉觅云应助oliver501采纳,获得10
13秒前
正经俠完成签到 ,获得积分20
14秒前
YY完成签到 ,获得积分10
15秒前
清秀灵薇发布了新的文献求助10
15秒前
LZL完成签到 ,获得积分10
15秒前
油焖青椒完成签到,获得积分10
15秒前
不会学术的羊完成签到,获得积分10
16秒前
16秒前
lio完成签到,获得积分20
17秒前
17秒前
FashionBoy应助汤浩宏采纳,获得10
18秒前
wjwless完成签到,获得积分10
19秒前
稀罕你发布了新的文献求助10
19秒前
圣晟胜发布了新的文献求助10
19秒前
寒冷半雪完成签到,获得积分10
23秒前
善良易文发布了新的文献求助10
23秒前
orixero应助GXY采纳,获得30
23秒前
香蕉不言发布了新的文献求助10
23秒前
迅速海云发布了新的文献求助10
24秒前
xiamovivi完成签到,获得积分10
25秒前
bitahu完成签到,获得积分20
25秒前
路边一颗小草完成签到,获得积分10
25秒前
26秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527998
求助须知:如何正确求助?哪些是违规求助? 3108225
关于积分的说明 9288086
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540195
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849