Machine learning framework for estimating CO2 adsorption on coalbed for carbon capture, utilization, and storage applications

吸附 人工神经网络 煤层气 均方误差 极限学习机 环境科学 石油工程 煤矿开采 材料科学 计算机科学 工艺工程 数学 人工智能 统计 化学 地质学 废物管理 工程类 有机化学
作者
Amer Alanazi,Ahmed Farid Ibrahim,Saleh Bawazer,Salaheldin Elkatatny,Hussein Hoteit
出处
期刊:International Journal of Coal Geology [Elsevier]
卷期号:275: 104297-104297 被引量:45
标识
DOI:10.1016/j.coal.2023.104297
摘要

For the purpose of carbon capture, utilization, and storage, carbon dioxide (CO2) injection in coal formations can enhance methane recovery and mitigate climate change. However, measuring CO2 adsorption isotherms using experimental or mathematical models can be time-consuming, expensive, and inaccurate. Thus, this study presents a machine-learning framework that predicts CO2 adsorption in coal formations based on various coal properties and testing conditions. Machine-learning (ML) framework was applied using a dataset of 1,064 points collected for different coal samples at different operating conditions to predict the CO2 adsorption in coal surface. The ML techniques include decision tree regression (DT), random forests (RF), gradient boost regression (GBR), K-nearest neighbor (KNN), artificial neural network (ANN), function network (FN), and adaptive neuro-fuzzy inference system (ANFIS). The applied framework determines CO2 adsorption as a function of coal's physical and chemical properties (moisture, ash, volatile matter, and fixed carbon content), the vitrinite reflectance of the coal samples, and testing conditions (pressure and temperature). Classical statical tools such as R2, root mean square error (RMSE), and average absolute percentage error (AAPE) were used to evaluate the model's performance analysis. The results demonstrated the ability to determine CO2 adsorption for varying coal types and at different temperature and pressure conditions. The statistical measures suggested that RF, GBR, and KNN are very reliable ML models, with RF being the best. At low operating pressure (P < 4 MPa), CO2 adsorption is impacted by any pressure changes, while it is stabilized at high-pressure values and becomes more dependent on the rock properties at high operating pressure (P > 4 MPa). The introduced ML framework offers a technique to evaluate the capability of different algorithms and accurately estimate CO2 adsorption without the requirement of additional experimental measurements or complicated mathematical techniques.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
一指墨完成签到,获得积分10
刚刚
爆米花应助ddd采纳,获得10
刚刚
刚刚
海纳百川完成签到,获得积分10
刚刚
量子星尘发布了新的文献求助10
刚刚
冬易发布了新的文献求助10
刚刚
欣喜冷卉完成签到,获得积分20
1秒前
peng完成签到,获得积分10
1秒前
2秒前
难过水杯完成签到 ,获得积分10
2秒前
cch12121发布了新的文献求助10
2秒前
星辰大海应助明天就毕业采纳,获得10
4秒前
4秒前
无极微光应助阿龙采纳,获得20
4秒前
4秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
浮游应助科研通管家采纳,获得10
4秒前
聪慧的金鱼完成签到,获得积分20
5秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
Verity应助科研通管家采纳,获得20
5秒前
汉堡包应助科研通管家采纳,获得10
5秒前
自由的沛山完成签到,获得积分10
5秒前
浮游应助科研通管家采纳,获得10
5秒前
HOAN应助科研通管家采纳,获得30
5秒前
思源应助科研通管家采纳,获得10
5秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
烟花应助含糊的冰安采纳,获得10
6秒前
6秒前
科研通AI6应助科研通管家采纳,获得10
6秒前
嘞是举仔应助科研通管家采纳,获得10
6秒前
半圆亻发布了新的文献求助10
6秒前
科研通AI6应助科研通管家采纳,获得10
6秒前
6秒前
QX发布了新的文献求助10
6秒前
林晚停应助科研通管家采纳,获得10
6秒前
lcc应助科研通管家采纳,获得10
6秒前
大模型应助科研通管家采纳,获得10
7秒前
zhonglv7应助科研通管家采纳,获得10
7秒前
Hello应助科研通管家采纳,获得10
7秒前
ysxl发布了新的文献求助10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5684488
求助须知:如何正确求助?哪些是违规求助? 5036727
关于积分的说明 15184287
捐赠科研通 4843754
什么是DOI,文献DOI怎么找? 2596869
邀请新用户注册赠送积分活动 1549511
关于科研通互助平台的介绍 1508027