清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Deep learning neural network derivation and testing to distinguish acute poisonings

医学 F1得分 对乙酰氨基酚 深度学习 人工智能 机器学习 药理学 计算机科学
作者
Omid Mehrpour,Christopher Hoyte,Abdullah Al Masud,Ashis Kumer Biswas,Jonathan Schimmel,Samaneh Nakhaee,Mohammad Sadegh Nasr,Heather Delva‐Clark,Foster R. Goss
出处
期刊:Expert Opinion on Drug Metabolism & Toxicology [Informa]
卷期号:19 (6): 367-380 被引量:1
标识
DOI:10.1080/17425255.2023.2232724
摘要

Introduction Acute poisoning is a significant global health burden, and the causative agent is often unclear. The primary aim of this pilot study was to develop a deep learning algorithm that predicts the most probable agent a poisoned patient was exposed to from a pre-specified list of drugs.Research design & methods Data were queried from the National Poison Data System (NPDS) from 2014 through 2018 for eight single-agent poisonings (acetaminophen, diphenhydramine, aspirin, calcium channel blockers, sulfonylureas, benzodiazepines, bupropion, and lithium). Two Deep Neural Networks (PyTorch and Keras) designed for multi-class classification tasks were applied.Results There were 201,031 single-agent poisonings included in the analysis. For distinguishing among selected poisonings, PyTorch model had specificity of 97%, accuracy of 83%, precision of 83%, recall of 83%, and a F1-score of 82%. Keras had specificity of 98%, accuracy of 83%, precision of 84%, recall of 83%, and a F1-score of 83%. The best performance was achieved in the diagnosis of single-agent poisoning in diagnosing poisoning by lithium, sulfonylureas, diphenhydramine, calcium channel blockers, then acetaminophen, in PyTorch (F1-score = 99%, 94%, 85%, 83%, and 82%, respectively) and Keras (F1-score = 99%, 94%, 86%, 82%, and 82%, respectively).Conclusion Deep neural networks can potentially help in distinguishing the causative agent of acute poisoning. This study used a small list of drugs, with polysubstance ingestions excluded.Reproducible source code and results can be obtained at https://github.com/ashiskb/npds-workspace.git
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
12秒前
26秒前
张可完成签到 ,获得积分10
43秒前
CodeCraft应助gszy1975采纳,获得10
47秒前
49秒前
乐乐应助科研通管家采纳,获得30
56秒前
彭于晏应助科研通管家采纳,获得10
56秒前
1分钟前
初心完成签到 ,获得积分10
1分钟前
1分钟前
TXZ06发布了新的文献求助10
2分钟前
2分钟前
古芍昂完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
3分钟前
鹤鸣发布了新的文献求助10
3分钟前
3分钟前
zai完成签到 ,获得积分20
3分钟前
3分钟前
3分钟前
4分钟前
4分钟前
4分钟前
5分钟前
5分钟前
5分钟前
陈无敌完成签到 ,获得积分10
5分钟前
5分钟前
6分钟前
刘贤华完成签到 ,获得积分10
6分钟前
6分钟前
6分钟前
6分钟前
7分钟前
offshore完成签到 ,获得积分10
7分钟前
7分钟前
7分钟前
7分钟前
绥生完成签到 ,获得积分10
8分钟前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162343
求助须知:如何正确求助?哪些是违规求助? 2813330
关于积分的说明 7899736
捐赠科研通 2472848
什么是DOI,文献DOI怎么找? 1316533
科研通“疑难数据库(出版商)”最低求助积分说明 631375
版权声明 602142