Covariate adjustment in randomized clinical trials with missing covariate and outcome data

协变量 缺少数据 逆概率加权 统计 插补(统计学) 计量经济学 加权 结果(博弈论) 计算机科学 数学 医学 倾向得分匹配 放射科 数理经济学
作者
Chia‐Rui Chang,Song Yue,Fan Li,Rui Wang
出处
期刊:Statistics in Medicine [Wiley]
卷期号:42 (22): 3919-3935 被引量:3
标识
DOI:10.1002/sim.9840
摘要

When analyzing data from randomized clinical trials, covariate adjustment can be used to account for chance imbalance in baseline covariates and to increase precision of the treatment effect estimate. A practical barrier to covariate adjustment is the presence of missing data. In this article, in the light of recent theoretical advancement, we first review several covariate adjustment methods with incomplete covariate data. We investigate the implications of the missing data mechanism on estimating the average treatment effect in randomized clinical trials with continuous or binary outcomes. In parallel, we consider settings where the outcome data are fully observed or are missing at random; in the latter setting, we propose a full weighting approach that combines inverse probability weighting for adjusting missing outcomes and overlap weighting for covariate adjustment. We highlight the importance of including the interaction terms between the missingness indicators and covariates as predictors in the models. We conduct comprehensive simulation studies to examine the finite-sample performance of the proposed methods and compare with a range of common alternatives. We find that conducting the proposed adjustment methods generally improves the precision of treatment effect estimates regardless of the imputation methods when the adjusted covariate is associated with the outcome. We apply the methods to the Childhood Adenotonsillectomy Trial to assess the effect of adenotonsillectomy on neurocognitive functioning scores.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
苏照杭应助kydd采纳,获得10
刚刚
英姑应助研友_8yN60L采纳,获得10
刚刚
学术蠕虫完成签到,获得积分10
1秒前
1秒前
1秒前
1秒前
2秒前
中心湖小海棠完成签到,获得积分10
2秒前
Orange应助new_vision采纳,获得10
2秒前
帅气妙彤完成签到,获得积分10
2秒前
ye完成签到,获得积分20
2秒前
易伊澤完成签到,获得积分10
2秒前
不准吃烤肉完成签到,获得积分10
2秒前
3秒前
华仔应助义气绿柳采纳,获得10
4秒前
踏实的诗筠完成签到 ,获得积分10
4秒前
ye发布了新的文献求助10
5秒前
5秒前
Micky发布了新的文献求助10
6秒前
ruxing完成签到,获得积分10
6秒前
影像大侠完成签到,获得积分10
6秒前
852应助HYG采纳,获得30
7秒前
麦麦完成签到,获得积分10
7秒前
田様应助Isabel采纳,获得10
7秒前
gezid完成签到 ,获得积分10
7秒前
8秒前
8秒前
niu1发布了新的文献求助10
8秒前
Intro发布了新的文献求助10
8秒前
舒服的冬天完成签到,获得积分10
9秒前
Helical给Helical的求助进行了留言
9秒前
甜蜜晓绿完成签到,获得积分10
9秒前
10秒前
钱多多完成签到,获得积分10
10秒前
baekhyun完成签到,获得积分20
10秒前
10秒前
dpp发布了新的文献求助10
10秒前
今今完成签到,获得积分10
10秒前
11秒前
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762