Covariate adjustment in randomized clinical trials with missing covariate and outcome data

协变量 缺少数据 逆概率加权 统计 插补(统计学) 计量经济学 加权 结果(博弈论) 计算机科学 数学 医学 倾向得分匹配 放射科 数理经济学
作者
Chia‐Rui Chang,Song Yue,Fan Li,Rui Wang
出处
期刊:Statistics in Medicine [Wiley]
卷期号:42 (22): 3919-3935 被引量:3
标识
DOI:10.1002/sim.9840
摘要

When analyzing data from randomized clinical trials, covariate adjustment can be used to account for chance imbalance in baseline covariates and to increase precision of the treatment effect estimate. A practical barrier to covariate adjustment is the presence of missing data. In this article, in the light of recent theoretical advancement, we first review several covariate adjustment methods with incomplete covariate data. We investigate the implications of the missing data mechanism on estimating the average treatment effect in randomized clinical trials with continuous or binary outcomes. In parallel, we consider settings where the outcome data are fully observed or are missing at random; in the latter setting, we propose a full weighting approach that combines inverse probability weighting for adjusting missing outcomes and overlap weighting for covariate adjustment. We highlight the importance of including the interaction terms between the missingness indicators and covariates as predictors in the models. We conduct comprehensive simulation studies to examine the finite-sample performance of the proposed methods and compare with a range of common alternatives. We find that conducting the proposed adjustment methods generally improves the precision of treatment effect estimates regardless of the imputation methods when the adjusted covariate is associated with the outcome. We apply the methods to the Childhood Adenotonsillectomy Trial to assess the effect of adenotonsillectomy on neurocognitive functioning scores.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
咖啡苦咔咔完成签到,获得积分10
刚刚
浮游应助yf990703采纳,获得10
刚刚
zz完成签到,获得积分10
1秒前
yznfly应助孙朱珠采纳,获得50
1秒前
ljlj发布了新的文献求助10
1秒前
1秒前
白开水完成签到 ,获得积分10
1秒前
轻柔的心碎完成签到,获得积分10
1秒前
研友_VZG7GZ应助lixiaofan采纳,获得10
1秒前
张一二二二完成签到,获得积分10
1秒前
无忧完成签到,获得积分10
2秒前
2秒前
求助人员发布了新的文献求助10
2秒前
ewdf发布了新的文献求助10
2秒前
浮游应助pgfx1993采纳,获得10
2秒前
Tammy发布了新的文献求助10
2秒前
所所应助等风等你采纳,获得10
2秒前
绿狗玩偶发布了新的文献求助10
2秒前
事已至此已成人喵完成签到,获得积分10
3秒前
jll关闭了jll文献求助
3秒前
小二郎应助ybwei2008_163采纳,获得10
4秒前
李爱国应助木灵采纳,获得10
4秒前
无忧发布了新的文献求助10
5秒前
王佳友完成签到 ,获得积分10
6秒前
奋斗发布了新的文献求助10
6秒前
是阿丹啊发布了新的文献求助10
6秒前
小小檀健次完成签到,获得积分10
7秒前
ding应助石豪有采纳,获得10
7秒前
Zzzz1发布了新的文献求助10
7秒前
July发布了新的文献求助10
7秒前
半根烟完成签到,获得积分10
8秒前
烟花应助张姣姣采纳,获得10
8秒前
清秀迎彤完成签到,获得积分10
8秒前
8秒前
Jasper应助幸福的雪枫采纳,获得10
8秒前
钙离子发布了新的文献求助10
9秒前
闪闪的澜完成签到,获得积分10
9秒前
Orange应助内向士萧采纳,获得10
9秒前
9秒前
桐桐应助一一采纳,获得10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1400
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5512592
求助须知:如何正确求助?哪些是违规求助? 4607038
关于积分的说明 14502582
捐赠科研通 4542444
什么是DOI,文献DOI怎么找? 2489039
邀请新用户注册赠送积分活动 1471072
关于科研通互助平台的介绍 1443218