已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Covariate adjustment in randomized clinical trials with missing covariate and outcome data

协变量 缺少数据 逆概率加权 统计 插补(统计学) 计量经济学 加权 结果(博弈论) 计算机科学 数学 医学 倾向得分匹配 放射科 数理经济学
作者
Chia‐Rui Chang,Song Yue,Fan Li,Rui Wang
出处
期刊:Statistics in Medicine [Wiley]
卷期号:42 (22): 3919-3935 被引量:3
标识
DOI:10.1002/sim.9840
摘要

When analyzing data from randomized clinical trials, covariate adjustment can be used to account for chance imbalance in baseline covariates and to increase precision of the treatment effect estimate. A practical barrier to covariate adjustment is the presence of missing data. In this article, in the light of recent theoretical advancement, we first review several covariate adjustment methods with incomplete covariate data. We investigate the implications of the missing data mechanism on estimating the average treatment effect in randomized clinical trials with continuous or binary outcomes. In parallel, we consider settings where the outcome data are fully observed or are missing at random; in the latter setting, we propose a full weighting approach that combines inverse probability weighting for adjusting missing outcomes and overlap weighting for covariate adjustment. We highlight the importance of including the interaction terms between the missingness indicators and covariates as predictors in the models. We conduct comprehensive simulation studies to examine the finite-sample performance of the proposed methods and compare with a range of common alternatives. We find that conducting the proposed adjustment methods generally improves the precision of treatment effect estimates regardless of the imputation methods when the adjusted covariate is associated with the outcome. We apply the methods to the Childhood Adenotonsillectomy Trial to assess the effect of adenotonsillectomy on neurocognitive functioning scores.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
呆萌的鸿煊完成签到,获得积分10
3秒前
完美世界应助淡然明轩采纳,获得10
4秒前
4秒前
清一完成签到,获得积分10
4秒前
Hao完成签到,获得积分10
5秒前
可爱的函函应助Bin采纳,获得10
5秒前
www发布了新的文献求助10
6秒前
常常嘻嘻发布了新的文献求助10
9秒前
ccf完成签到 ,获得积分10
10秒前
11秒前
SciGPT应助科研通管家采纳,获得10
11秒前
科研通AI6应助科研通管家采纳,获得10
11秒前
天天快乐应助科研通管家采纳,获得10
11秒前
wanci应助科研通管家采纳,获得10
11秒前
AN应助科研通管家采纳,获得100
11秒前
NexusExplorer应助科研通管家采纳,获得10
11秒前
11秒前
TED应助科研通管家采纳,获得10
11秒前
11秒前
轨迹应助科研通管家采纳,获得10
11秒前
科研通AI6应助科研通管家采纳,获得10
11秒前
wanci应助科研通管家采纳,获得30
11秒前
隐形曼青应助科研通管家采纳,获得10
12秒前
12秒前
Sunday完成签到 ,获得积分10
14秒前
科研通AI6.1应助熊熊阁采纳,获得10
15秒前
15秒前
量子星尘发布了新的文献求助10
17秒前
丘比特应助chruse采纳,获得10
17秒前
liya发布了新的文献求助10
19秒前
李健应助佛光辉采纳,获得10
20秒前
20秒前
20秒前
无奈的盈发布了新的文献求助10
20秒前
22秒前
22秒前
23秒前
Groot发布了新的文献求助10
25秒前
叼着奶瓶上天完成签到,获得积分10
27秒前
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
sQUIZ your knowledge: Multiple progressive erythematous plaques and nodules in an elderly man 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5771770
求助须知:如何正确求助?哪些是违规求助? 5593601
关于积分的说明 15428336
捐赠科研通 4905041
什么是DOI,文献DOI怎么找? 2639200
邀请新用户注册赠送积分活动 1587060
关于科研通互助平台的介绍 1541941