海水
电解
析氧
电催化剂
分解水
阳极
电解水
阴极保护
材料科学
电化学
阴极
化学工程
催化作用
无机化学
纳米技术
电极
化学
海洋学
物理化学
有机化学
地质学
工程类
光催化
电解质
作者
Xiaobin Liu,Jing‐Qi Chi,Huimin Mao,Lei Wang
标识
DOI:10.1002/aenm.202301438
摘要
Abstract Directly seawater electrolysis would be a transformative technology for large‐scale carbon‐neutral hydrogenproduction without relying on pure water. However, current seawater splitting is challenged by detrimental chlorine chemistry, the sluggish kinetics, and the existence of impurities/precipitates, making it more difficult than pure water splitting. So far, tremendous efforts have been made to develop electrocatalysts to boost the electrocatalytic hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) activities for seawater‐based electrolyzers. To get further insights into the current achievements and future perspectives of the catalysts for seawater electrolysis, general principles are summarized for a comprehensive optimization, ranging from active sites, electrochemical interface, to electron transfer path, to fully improve electrocatalytic performance for seawater electrolysis. Then, aiming at the different challenges of the cathode and anode for seawater electrolysis, unique strategies to design effective cathodic and anodic catalysts, such pH design criterion, selective HER/OER, and Cl − blocking layers, are discussed, respectively. Also, several future fields which are worthy for further exploration as rational extensions of developing electrocatalysts toward practical applications are put forward.
科研通智能强力驱动
Strongly Powered by AbleSci AI