亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Probabilistic Evaluation of Drought Propagation Using Satellite Data and Deep Learning Model: From Precipitation to Soil Moisture and Groundwater

环境科学 水资源 概率逻辑 含水量 降水 连接词(语言学) 气候变化 卫星 气候学 气象学 地理 数学 统计 地质学 生态学 海洋学 岩土工程 航空航天工程 工程类 计量经济学 生物
作者
Jae Young Seo,Sang-Il Lee
出处
期刊:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:16: 6048-6061 被引量:5
标识
DOI:10.1109/jstars.2023.3290685
摘要

The frequency of drought events has increased with climate change, making it vital to monitor and predict the response to drought. In particular, the relationship among meteorological, agricultural, and groundwater droughts needs to be characterized under different drought conditions. In this study, a probabilistic framework was developed for analyzing the spatio-temporal propagation of droughts and applied to South Korea. Three drought indices were calculated using satellite data and a deep learning model to determine the spatial and temporal extents of drought. The average propagation times were calculated. The time from meteorological to agricultural drought (MD-to-AD) was 2.83 months, and that from meteorological to groundwater drought (MD-to-GD) was 4.34 months. Next, the joint distribution among three drought types based on the best-fit copula functions was constructed. The conditional probabilities of drought occurrence were calculated on temporal and spatial scales. For instance, the probabilities of MD-to-GD propagation under light, moderate, severe, and extreme meteorological drought conditions were 38%, 43%, 48%, and 53%, respectively. The propagated drought occurrence probability was confirmed to be the highest under extreme antecedent drought conditions. The results of this study provide insight into the spatio-temporal drought propagation process from a probabilistic viewpoint. The use of satellite data and a deep learning model is expected to increase the efficiency of drought management practices such as vulnerability assessment and early warning system development.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助C17采纳,获得10
1秒前
动听衬衫应助科研通管家采纳,获得10
2秒前
动听衬衫应助科研通管家采纳,获得30
2秒前
科研通AI5应助机智冰姬采纳,获得10
11秒前
十三完成签到,获得积分20
15秒前
22秒前
漫漫发布了新的文献求助10
30秒前
31秒前
小张完成签到 ,获得积分10
32秒前
33秒前
34秒前
37秒前
现代CC完成签到 ,获得积分10
39秒前
科研通AI5应助漫漫采纳,获得10
40秒前
展锋发布了新的文献求助10
41秒前
陶醉元冬完成签到,获得积分10
42秒前
bkagyin应助爱听歌凤灵采纳,获得10
42秒前
英姑应助123采纳,获得10
45秒前
斯文败类应助奥黛丽悟空采纳,获得10
49秒前
51秒前
52秒前
55秒前
59秒前
桐桐应助111采纳,获得10
1分钟前
1分钟前
爱听歌凤灵完成签到,获得积分10
1分钟前
今日发布了新的文献求助10
1分钟前
Lucas应助七色光采纳,获得10
1分钟前
充电宝应助彭蓬采纳,获得10
1分钟前
Splaink完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
科研通AI5应助花骨头采纳,获得10
1分钟前
今日完成签到,获得积分10
1分钟前
蕊蕊应助奥黛丽悟空采纳,获得10
1分钟前
2分钟前
酷波er应助科研通管家采纳,获得10
2分钟前
111发布了新的文献求助10
2分钟前
2分钟前
Owen应助xuan采纳,获得30
2分钟前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Theory of Dislocations (3rd ed.) 500
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5220743
求助须知:如何正确求助?哪些是违规求助? 4394021
关于积分的说明 13680050
捐赠科研通 4256994
什么是DOI,文献DOI怎么找? 2335881
邀请新用户注册赠送积分活动 1333500
关于科研通互助平台的介绍 1287918