Probabilistic Evaluation of Drought Propagation Using Satellite Data and Deep Learning Model: From Precipitation to Soil Moisture and Groundwater

环境科学 水资源 概率逻辑 含水量 降水 连接词(语言学) 气候变化 卫星 气候学 气象学 地理 数学 统计 地质学 海洋学 工程类 航空航天工程 计量经济学 生物 岩土工程 生态学
作者
Jae Young Seo,Sang-Il Lee
出处
期刊:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:16: 6048-6061 被引量:5
标识
DOI:10.1109/jstars.2023.3290685
摘要

The frequency of drought events has increased with climate change, making it vital to monitor and predict the response to drought. In particular, the relationship among meteorological, agricultural, and groundwater droughts needs to be characterized under different drought conditions. In this study, a probabilistic framework was developed for analyzing the spatio-temporal propagation of droughts and applied to South Korea. Three drought indices were calculated using satellite data and a deep learning model to determine the spatial and temporal extents of drought. The average propagation times were calculated. The time from meteorological to agricultural drought (MD-to-AD) was 2.83 months, and that from meteorological to groundwater drought (MD-to-GD) was 4.34 months. Next, the joint distribution among three drought types based on the best-fit copula functions was constructed. The conditional probabilities of drought occurrence were calculated on temporal and spatial scales. For instance, the probabilities of MD-to-GD propagation under light, moderate, severe, and extreme meteorological drought conditions were 38%, 43%, 48%, and 53%, respectively. The propagated drought occurrence probability was confirmed to be the highest under extreme antecedent drought conditions. The results of this study provide insight into the spatio-temporal drought propagation process from a probabilistic viewpoint. The use of satellite data and a deep learning model is expected to increase the efficiency of drought management practices such as vulnerability assessment and early warning system development.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Maigret完成签到,获得积分10
1秒前
两飞飞完成签到,获得积分10
1秒前
1秒前
韭菜盒子发布了新的文献求助10
2秒前
ximu完成签到,获得积分20
2秒前
CLN完成签到,获得积分10
2秒前
SciGPT应助单薄凌蝶采纳,获得50
3秒前
3秒前
111完成签到,获得积分10
3秒前
小马甲应助117采纳,获得10
3秒前
甜甜的猫咪完成签到,获得积分10
3秒前
3秒前
66应助马佳凯采纳,获得10
3秒前
4秒前
是述不是沭完成签到,获得积分10
4秒前
5秒前
lei完成签到,获得积分10
5秒前
瘦瘦的背包完成签到,获得积分10
6秒前
6秒前
赘婿应助Elaine采纳,获得10
6秒前
深情安青应助科研通管家采纳,获得10
6秒前
科研小白完成签到,获得积分10
6秒前
爆米花应助科研通管家采纳,获得10
6秒前
情怀应助科研通管家采纳,获得10
6秒前
田様应助科研通管家采纳,获得10
7秒前
7秒前
思源应助科研通管家采纳,获得10
7秒前
CodeCraft应助科研通管家采纳,获得50
7秒前
CodeCraft应助科研通管家采纳,获得30
7秒前
控制小弟应助科研通管家采纳,获得10
7秒前
我是老大应助科研通管家采纳,获得10
7秒前
科研通AI5应助科研通管家采纳,获得10
7秒前
彭于晏应助科研通管家采纳,获得10
7秒前
深情安青应助科研通管家采纳,获得10
7秒前
顾矜应助科研通管家采纳,获得10
7秒前
Ava应助科研通管家采纳,获得10
7秒前
今后应助科研通管家采纳,获得10
7秒前
脑洞疼应助科研通管家采纳,获得10
8秒前
丘比特应助科研通管家采纳,获得10
8秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740