Probabilistic Evaluation of Drought Propagation Using Satellite Data and Deep Learning Model: From Precipitation to Soil Moisture and Groundwater

环境科学 水资源 概率逻辑 含水量 降水 连接词(语言学) 气候变化 卫星 气候学 气象学 地理 数学 统计 地质学 海洋学 工程类 航空航天工程 计量经济学 生物 岩土工程 生态学
作者
Jae Young Seo,Sang-Il Lee
出处
期刊:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:16: 6048-6061 被引量:5
标识
DOI:10.1109/jstars.2023.3290685
摘要

The frequency of drought events has increased with climate change, making it vital to monitor and predict the response to drought. In particular, the relationship among meteorological, agricultural, and groundwater droughts needs to be characterized under different drought conditions. In this study, a probabilistic framework was developed for analyzing the spatio-temporal propagation of droughts and applied to South Korea. Three drought indices were calculated using satellite data and a deep learning model to determine the spatial and temporal extents of drought. The average propagation times were calculated. The time from meteorological to agricultural drought (MD-to-AD) was 2.83 months, and that from meteorological to groundwater drought (MD-to-GD) was 4.34 months. Next, the joint distribution among three drought types based on the best-fit copula functions was constructed. The conditional probabilities of drought occurrence were calculated on temporal and spatial scales. For instance, the probabilities of MD-to-GD propagation under light, moderate, severe, and extreme meteorological drought conditions were 38%, 43%, 48%, and 53%, respectively. The propagated drought occurrence probability was confirmed to be the highest under extreme antecedent drought conditions. The results of this study provide insight into the spatio-temporal drought propagation process from a probabilistic viewpoint. The use of satellite data and a deep learning model is expected to increase the efficiency of drought management practices such as vulnerability assessment and early warning system development.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xzy998完成签到,获得积分0
1秒前
2秒前
轻松思枫完成签到 ,获得积分10
2秒前
Yeah发布了新的文献求助10
4秒前
耍酷寻双完成签到 ,获得积分10
6秒前
独钓寒江雪完成签到 ,获得积分10
7秒前
小董发布了新的文献求助10
7秒前
Hyperme发布了新的文献求助10
7秒前
糖伯虎完成签到 ,获得积分10
8秒前
lalala发布了新的文献求助10
11秒前
iNk应助典雅巧蕊采纳,获得20
13秒前
14秒前
Hyperme完成签到,获得积分10
16秒前
rosalieshi应助小董采纳,获得30
16秒前
可靠若云完成签到,获得积分10
19秒前
hwen1998完成签到 ,获得积分10
20秒前
飞飞完成签到,获得积分10
22秒前
舒心如凡完成签到,获得积分10
25秒前
小灰灰完成签到,获得积分10
25秒前
车水完成签到 ,获得积分10
27秒前
CooL完成签到 ,获得积分10
29秒前
29秒前
陈荣完成签到 ,获得积分10
31秒前
albert666完成签到,获得积分10
33秒前
好巧发布了新的文献求助10
35秒前
36秒前
旧雨新知完成签到 ,获得积分10
38秒前
万里完成签到,获得积分10
39秒前
Arctic发布了新的文献求助10
39秒前
Yeah完成签到,获得积分10
45秒前
45秒前
恒河鲤完成签到,获得积分10
46秒前
bwx完成签到,获得积分10
47秒前
虚幻的莞完成签到,获得积分10
48秒前
书芹完成签到,获得积分10
50秒前
biocreater完成签到,获得积分10
52秒前
52秒前
张帆远航发布了新的文献求助10
54秒前
54秒前
张先森完成签到,获得积分10
55秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
Impiego dell’associazione acetazolamide/pentossifillina nel trattamento dell’ipoacusia improvvisa idiopatica in pazienti affetti da glaucoma cronico 480
Geochemistry, 2nd Edition 地球化学经典教科书第二版,不要epub版本 431
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3291653
求助须知:如何正确求助?哪些是违规求助? 2928111
关于积分的说明 8435461
捐赠科研通 2599941
什么是DOI,文献DOI怎么找? 1418875
科研通“疑难数据库(出版商)”最低求助积分说明 660150
邀请新用户注册赠送积分活动 642808