Analysis of lncRNAs profiles associated with ferroptosis can predict prognosis and immune landscape and drug sensitivity in patients with clear cell renal cell carcinoma

肾透明细胞癌 肿瘤科 列线图 危险系数 比例危险模型 内科学 免疫疗法 医学 长非编码RNA 肾细胞癌 癌症 置信区间 生物 基因 核糖核酸 遗传学
作者
Huantao Zong,Anning Li,Yongjin Huang,Xuanyan Che,Yong Zhang,Guikai Ma,Zhongbao Zhou
出处
期刊:Journal of Biochemical and Molecular Toxicology [Wiley]
卷期号:37 (11) 被引量:2
标识
DOI:10.1002/jbt.23464
摘要

Ferroptosis is a novel kind of iron- and reactive oxygen-induced cell death, investigation into ferroptosis-associated long noncoding RNAs (FALs) in clear cell renal cell carcinoma (ccRCC) is scarce. The goal of the research was to look at FALs' possible predictive significance, as well as their interaction with the immune microenvironment and therapeutic responsiveness of ccRCC. The Cancer Genome Atlas database was employed to retrieve RNA sequencing data from 530 individuals with ccRCC. Patients with ccRCC were randomly assigned to one of two groups: training or testing. Pearson's correlation analysis through the identified ferroptosis-related genes was implemented to screen for FALs. Finally, a FALs signature composed of eight lncRNAs was discovered for predicting survival outcomes in ccRCC patients. ccRCC patients in the training, testing, and overall cohorts were separated into low-risk and high-risk groups based on their risk score. The FALs signature was identified to be an independent factor for overall survival in the multivariate Cox analysis (hazard ratio = 1.013, 95% confidence interval = 1.008-1.018, p < 0.001). A clinically prognostic nomogram was created depending on the FALs signature and clinical characteristics. The nomogram provides greater clinical practicability and may reliably estimate patients' overall survival. The FALs signature may additionally precisely represent ccRCC's immunological environment, immunotherapy reaction, and drug sensitivity. The eight FALs and their signature provide precise and reliable methods for evaluating the clinical effects of in ccRCC patients, and they could be biological markers and targets for therapy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
DAYDAY完成签到 ,获得积分10
2秒前
szr发布了新的文献求助10
2秒前
nono完成签到,获得积分10
2秒前
大个应助leo采纳,获得10
5秒前
5秒前
6秒前
7秒前
7秒前
8秒前
szr完成签到,获得积分10
9秒前
12秒前
12秒前
量子星尘发布了新的文献求助10
12秒前
豆豆苗发布了新的文献求助10
12秒前
ccc发布了新的文献求助10
12秒前
松松完成签到 ,获得积分10
12秒前
lulu发布了新的文献求助10
14秒前
炙热棉花糖完成签到,获得积分10
14秒前
浮游应助富贵采纳,获得10
15秒前
15秒前
ri_290发布了新的文献求助10
17秒前
19秒前
19秒前
22335566发布了新的文献求助10
20秒前
lllldjhdy完成签到 ,获得积分10
22秒前
23秒前
西一阿铭发布了新的文献求助10
24秒前
学术老6完成签到,获得积分0
25秒前
Criminology34应助兰彻采纳,获得10
30秒前
35秒前
Ning完成签到,获得积分10
36秒前
祝好完成签到,获得积分10
37秒前
38秒前
39秒前
西一阿铭发布了新的文献求助10
39秒前
我是老大应助李昕123采纳,获得10
39秒前
香查朵完成签到,获得积分10
39秒前
量子星尘发布了新的文献求助10
40秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 921
Aerospace Standards Index - 2025 800
Identifying dimensions of interest to support learning in disengaged students: the MINE project 800
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5431792
求助须知:如何正确求助?哪些是违规求助? 4544653
关于积分的说明 14193386
捐赠科研通 4463776
什么是DOI,文献DOI怎么找? 2446873
邀请新用户注册赠送积分活动 1438218
关于科研通互助平台的介绍 1414921