Anti-corruption campaign, political connections, and court bias: Evidence from Chinese corporate lawsuits

政治 语言变化 经济 中国 投资(军事) 政治腐败 政府(语言学) 业务 司法改革 政治学 法律与经济学 腐败行为 政治经济学 法学 哲学 语言学 文学类 艺术
作者
Peng Zhang
出处
期刊:Journal of Public Economics [Elsevier BV]
卷期号:222: 104861-104861 被引量:10
标识
DOI:10.1016/j.jpubeco.2023.104861
摘要

This paper establishes the presence of political corruption in court and identifies a novel channel—interfering with court decisions—through which local corrupt politicians provide political favors for politically connected firms. Using a unique data set of 11,238 commercial lawsuits involving Chinese listed firms, we examine how China's recent anti-corruption campaign, one of whose goals is to combat political interference in the courts, affects court advantages of politically connected firms. We find that connected firms' win rates dropped by 6.3% after the anti-corruption, suggesting that the campaign stopped corrupt politicians transferring 1.8% of total monetary amounts of commercial disputes from unconnected to politically connected parties by influencing trials. The effect is more salient for firms connected to more powerful officials, noncontract-based cases, lower-level courts, regions with weak legal environments, and courts that depend more on local government. Moreover, anti-corruption promotes a better judicial environment, not only improves the quality of judicial decisions, but also boosts public confidence in the judicial system, and encourages firms to settle conflicts through court. Finally, we explore the campaign's broader economic influences and find that after the campaign, cities with initially poorly functioning judiciaries gained more investment, employed more labor, produced more output, and attracted more new firms, particularly in those industries with high contract intensity. Overall, the anti-corruption campaign significantly improved the judicial and economic environment in China.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
超帅的麦片完成签到,获得积分10
刚刚
Singularity应助善良的冷梅采纳,获得10
刚刚
1秒前
1秒前
LingC发布了新的文献求助10
1秒前
上官若男应助时尚猎豹采纳,获得10
2秒前
2秒前
大模型应助高大橙采纳,获得10
3秒前
隐形曼青应助dawn采纳,获得10
3秒前
充电宝应助count采纳,获得10
4秒前
Hawk发布了新的文献求助10
4秒前
拼搏的以彤完成签到,获得积分10
4秒前
爆米花应助丸橙采纳,获得10
4秒前
5秒前
7秒前
7秒前
叶天师完成签到,获得积分10
7秒前
我是老大应助阿德利企鹅采纳,获得10
8秒前
xuan发布了新的文献求助10
8秒前
怕孤独的从雪完成签到,获得积分10
8秒前
LDDDGR完成签到,获得积分10
9秒前
明亮师完成签到 ,获得积分10
9秒前
9秒前
爆米花应助John采纳,获得10
10秒前
黄色新闻关注了科研通微信公众号
10秒前
Orange应助戒骄戒躁采纳,获得10
10秒前
xiaoW完成签到,获得积分20
10秒前
Jasper应助冷静的荔枝采纳,获得10
10秒前
10秒前
顶级洋仔发布了新的文献求助10
11秒前
小陈完成签到,获得积分10
11秒前
jjhh发布了新的文献求助20
12秒前
可乐完成签到,获得积分20
12秒前
耍酷白安发布了新的文献求助10
13秒前
13秒前
易吴鱼完成签到 ,获得积分10
13秒前
13秒前
13秒前
14秒前
Jasper应助张涛采纳,获得10
14秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
Measure Mean Linear Intercept 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3731567
求助须知:如何正确求助?哪些是违规求助? 3275907
关于积分的说明 9994466
捐赠科研通 2991430
什么是DOI,文献DOI怎么找? 1641527
邀请新用户注册赠送积分活动 779895
科研通“疑难数据库(出版商)”最低求助积分说明 748498