甲基化
N6-甲基腺苷
DNA甲基化
增强子
生物
组蛋白
基因表达
基因
假性剥落
表观遗传学
转录组
细胞生物学
分子生物学
遗传学
甲基转移酶
青光眼
神经科学
作者
Jieying Guan,Zhidong Li,Aizezi Wumaier,Yuncheng Ma,Lingling Xie,He‐Ping Wu,Rongxin Chen,Yingting Zhu,Yehong Zhuo
标识
DOI:10.1016/j.exer.2023.109473
摘要
N6-methyladenosine (m6A) modification is one of the most common types of methylation modifications in eukaryotic mRNA. However, its role in the pathogenesis of pseudoexfoliation glaucoma (PXG) has not yet been reported. To enhance understanding in this regard, we assessed the m6A methylome in the aqueous humor of patients with PXG. MeRIP-Seq and RNA-Seq analyses were performed to compare the m6A methylomes and gene expression profiles of the aqueous humor of patients with PXG with those of patients with age-related cataract (ARC). Colorimetric m6A quantification was performed to detect global m6A levels. Quantitative reverse transcription PCR confirmed the expression of m6A-related enzymes and mRNAs in both groups. Results showed significantly higher aqueous humor m6A levels in the PXG group than in the ARC group. Five m6A-related enzymes, including METTL3, YTHDC2, HNRNPA2B1, HNRNPC, and LRPPRC, were significantly up-regulated in PXG specimens. We also observed 9728 m6A-modified peaks related to 6126 gene transcripts in the PXG group, with more than 250 genes containing one m6A peak (hypomethylated or hypermethylated). The distribution of the m6A peaks was enriched in coding sequences and 3'-untranslated regions for both groups. GGAC motif structures were also significantly enriched. Bioinformatics analysis further revealed that m6A plays a critical role in extracellular matrix formation and histone deacetylation. Additionally, MMP14, ADAMTSL1, FN1, and HDAC1 showed significant changes in m6A methylation and mRNA expression in the PXG group. Therefore, m6A methylation may regulate extracellular matrix composition in PXG and METTL3 may be a pivotal regulator of this process. In the future, it would be necessary to investigate MMP14, ADAMTSL1, FN1, and HDAC1, which are potential target genes.
科研通智能强力驱动
Strongly Powered by AbleSci AI