数学
下降方向
特征向量
凸函数
线性化
算法
静止点
互补理论
混合互补问题
数学优化
互补性(分子生物学)
趋同(经济学)
线性互补问题
凸优化
正多边形
应用数学
梯度下降
数学分析
计算机科学
非线性系统
物理
量子力学
生物
遗传学
几何学
机器学习
人工神经网络
经济
经济增长
标识
DOI:10.1016/j.jmaa.2023.127320
摘要
In this paper, we introduce the difference of convex function (DC) algorithm and the descent algorithm for solving the symmetric eigenvalue complementarity problem (EiCP), respectively. The main effort of these two algorithms is to efficiently find a stationary point of a quadratic subproblem in each iteration. Moreover, the global convergence of the proposed algorithms is discussed. Numerical experiments show the advantage of our proposed algorithms over several state-of-the-art solvers, such as an alternating direction method of multipliers (ADMM) and the sequential partial linearization (SPL) algorithms.
科研通智能强力驱动
Strongly Powered by AbleSci AI