Molecular language models: RNNs or transformer?

变压器 计算机科学 人工智能 生物 计算生物学 工程类 电气工程 电压
作者
Yangyang Chen,Zixu Wang,Xiangxiang Zeng,Yayang Li,Pengyong Li,Xiucai Ye,Tetsuya Sakurai
出处
期刊:Briefings in Functional Genomics [Oxford University Press]
卷期号:22 (4): 392-400 被引量:13
标识
DOI:10.1093/bfgp/elad012
摘要

Abstract Language models have shown the capacity to learn complex molecular distributions. In the field of molecular generation, they are designed to explore the distribution of molecules, and previous studies have demonstrated their ability to learn molecule sequences. In the early times, recurrent neural networks (RNNs) were widely used for feature extraction from sequence data and have been used for various molecule generation tasks. In recent years, the attention mechanism for sequence data has become popular. It captures the underlying relationships between words and is widely applied to language models. The Transformer-Layer, a model based on a self-attentive mechanism, also shines the same as the RNN-based model. In this research, we investigated the difference between RNNs and the Transformer-Layer to learn a more complex distribution of molecules. For this purpose, we experimented with three different generative tasks: the distributions of molecules with elevated scores of penalized LogP, multimodal distributions of molecules and the largest molecules in PubChem. We evaluated the models on molecular properties, basic metrics, Tanimoto similarity, etc. In addition, we applied two different representations of the molecule, SMILES and SELFIES. The results show that the two language models can learn complex molecular distributions and SMILES-based representation has better performance than SELFIES. The choice between RNNs and the Transformer-Layer needs to be based on the characteristics of dataset. RNNs work better on data focus on local features and decreases with multidistribution data, while the Transformer-Layer is more suitable when meeting molecular with larger weights and focusing on global features.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
风控完成签到,获得积分20
刚刚
刚刚
哇哈哈发布了新的文献求助10
1秒前
YincLin应助超帅尔竹采纳,获得10
1秒前
翼静应助wanderingx采纳,获得10
2秒前
2秒前
Owen应助洛希极限采纳,获得20
3秒前
zhang_23发布了新的文献求助10
3秒前
know完成签到,获得积分10
3秒前
称心寒松完成签到,获得积分10
4秒前
5秒前
8R60d8应助zzz采纳,获得10
5秒前
WuchangI完成签到,获得积分10
5秒前
6秒前
JamesPei应助yuery采纳,获得10
6秒前
无问发布了新的文献求助10
6秒前
顺心凡之完成签到,获得积分20
6秒前
何半山完成签到,获得积分10
6秒前
7秒前
柳絮完成签到,获得积分10
7秒前
7秒前
龙06发布了新的文献求助10
7秒前
8秒前
粗心的邴发布了新的文献求助10
9秒前
9秒前
9秒前
王蓉完成签到,获得积分10
9秒前
田様应助奥丁的胡子采纳,获得10
9秒前
洛希极限完成签到,获得积分10
10秒前
称心寒松发布了新的文献求助10
10秒前
尊敬曼岚完成签到,获得积分10
10秒前
欢呼沅完成签到,获得积分10
10秒前
小桃子发布了新的文献求助10
10秒前
11秒前
12秒前
夏紊发布了新的文献求助10
12秒前
13秒前
楚天完成签到,获得积分10
13秒前
123发布了新的文献求助30
13秒前
lsiah发布了新的文献求助10
15秒前
高分求助中
Earth System Geophysics 1000
Studies on the inheritance of some characters in rice Oryza sativa L 600
Medicina di laboratorio. Logica e patologia clinica 600
mTOR signalling in RPGR-associated Retinitis Pigmentosa 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Aspects of Babylonian celestial divination: the lunar eclipse tablets of Enūma Anu Enlil 500
Semiconductor Process Reliability in Practice 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3206140
求助须知:如何正确求助?哪些是违规求助? 2855558
关于积分的说明 8100014
捐赠科研通 2520572
什么是DOI,文献DOI怎么找? 1353532
科研通“疑难数据库(出版商)”最低求助积分说明 641780
邀请新用户注册赠送积分活动 612869