Molecular language models: RNNs or transformer?

变压器 计算机科学 人工智能 生物 计算生物学 工程类 电气工程 电压
作者
Yangyang Chen,Zixu Wang,Xiangxiang Zeng,Yayang Li,Pengyong Li,Xiucai Ye,Tetsuya Sakurai
出处
期刊:Briefings in Functional Genomics [Oxford University Press]
卷期号:22 (4): 392-400 被引量:13
标识
DOI:10.1093/bfgp/elad012
摘要

Abstract Language models have shown the capacity to learn complex molecular distributions. In the field of molecular generation, they are designed to explore the distribution of molecules, and previous studies have demonstrated their ability to learn molecule sequences. In the early times, recurrent neural networks (RNNs) were widely used for feature extraction from sequence data and have been used for various molecule generation tasks. In recent years, the attention mechanism for sequence data has become popular. It captures the underlying relationships between words and is widely applied to language models. The Transformer-Layer, a model based on a self-attentive mechanism, also shines the same as the RNN-based model. In this research, we investigated the difference between RNNs and the Transformer-Layer to learn a more complex distribution of molecules. For this purpose, we experimented with three different generative tasks: the distributions of molecules with elevated scores of penalized LogP, multimodal distributions of molecules and the largest molecules in PubChem. We evaluated the models on molecular properties, basic metrics, Tanimoto similarity, etc. In addition, we applied two different representations of the molecule, SMILES and SELFIES. The results show that the two language models can learn complex molecular distributions and SMILES-based representation has better performance than SELFIES. The choice between RNNs and the Transformer-Layer needs to be based on the characteristics of dataset. RNNs work better on data focus on local features and decreases with multidistribution data, while the Transformer-Layer is more suitable when meeting molecular with larger weights and focusing on global features.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
1秒前
1秒前
1秒前
Grace发布了新的文献求助10
2秒前
巩志成发布了新的文献求助10
2秒前
2秒前
天天快乐应助侯zijun采纳,获得10
2秒前
田様应助迷人秋翠采纳,获得10
3秒前
111发布了新的文献求助10
3秒前
peiyaoyan完成签到,获得积分10
3秒前
3秒前
3秒前
刘柳完成签到 ,获得积分10
4秒前
愉快又莲完成签到,获得积分10
4秒前
mksw发布了新的文献求助10
4秒前
东方巧曼完成签到,获得积分10
4秒前
CatLight完成签到,获得积分20
5秒前
meimei发布了新的文献求助10
5秒前
thousandlong发布了新的文献求助10
5秒前
羞涩的大象完成签到,获得积分10
5秒前
5秒前
蓝胖子完成签到,获得积分10
5秒前
ALSI发布了新的文献求助30
5秒前
烟花应助cbx采纳,获得10
6秒前
houxy完成签到 ,获得积分10
6秒前
孙畅完成签到 ,获得积分10
6秒前
奇异果果发布了新的文献求助10
6秒前
柚C美式完成签到 ,获得积分10
7秒前
ganhykk完成签到,获得积分20
7秒前
Amyfighter完成签到,获得积分10
7秒前
研友_P85D6Z发布了新的文献求助10
7秒前
7秒前
彭于晏应助我是唐不是傻采纳,获得10
8秒前
今后应助phantoenix采纳,获得10
8秒前
BYN完成签到 ,获得积分10
8秒前
cheng完成签到,获得积分10
8秒前
mayi完成签到,获得积分10
8秒前
直率鼠标完成签到,获得积分10
9秒前
怕黑天与发布了新的文献求助10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
A Practical Introduction to Regression Discontinuity Designs 2000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5659101
求助须知:如何正确求助?哪些是违规求助? 4825945
关于积分的说明 15085232
捐赠科研通 4817760
什么是DOI,文献DOI怎么找? 2578352
邀请新用户注册赠送积分活动 1532998
关于科研通互助平台的介绍 1491722