Molecular language models: RNNs or transformer?

变压器 计算机科学 人工智能 生物 计算生物学 工程类 电气工程 电压
作者
Yangyang Chen,Zixu Wang,Xiangxiang Zeng,Yayang Li,Pengyong Li,Xiucai Ye,Tetsuya Sakurai
出处
期刊:Briefings in Functional Genomics [Oxford University Press]
卷期号:22 (4): 392-400 被引量:13
标识
DOI:10.1093/bfgp/elad012
摘要

Abstract Language models have shown the capacity to learn complex molecular distributions. In the field of molecular generation, they are designed to explore the distribution of molecules, and previous studies have demonstrated their ability to learn molecule sequences. In the early times, recurrent neural networks (RNNs) were widely used for feature extraction from sequence data and have been used for various molecule generation tasks. In recent years, the attention mechanism for sequence data has become popular. It captures the underlying relationships between words and is widely applied to language models. The Transformer-Layer, a model based on a self-attentive mechanism, also shines the same as the RNN-based model. In this research, we investigated the difference between RNNs and the Transformer-Layer to learn a more complex distribution of molecules. For this purpose, we experimented with three different generative tasks: the distributions of molecules with elevated scores of penalized LogP, multimodal distributions of molecules and the largest molecules in PubChem. We evaluated the models on molecular properties, basic metrics, Tanimoto similarity, etc. In addition, we applied two different representations of the molecule, SMILES and SELFIES. The results show that the two language models can learn complex molecular distributions and SMILES-based representation has better performance than SELFIES. The choice between RNNs and the Transformer-Layer needs to be based on the characteristics of dataset. RNNs work better on data focus on local features and decreases with multidistribution data, while the Transformer-Layer is more suitable when meeting molecular with larger weights and focusing on global features.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
阿奶完成签到,获得积分10
1秒前
1秒前
1秒前
1秒前
1秒前
1秒前
1秒前
李爱国应助科研通管家采纳,获得10
1秒前
李爱国应助科研通管家采纳,获得10
1秒前
在水一方应助科研通管家采纳,获得10
1秒前
传奇3应助科研通管家采纳,获得10
2秒前
2秒前
NexusExplorer应助科研通管家采纳,获得10
2秒前
无花果应助科研通管家采纳,获得10
2秒前
李爱国应助科研通管家采纳,获得10
2秒前
充电宝应助科研通管家采纳,获得10
2秒前
桐桐应助科研通管家采纳,获得10
2秒前
所所应助科研通管家采纳,获得10
2秒前
2秒前
orixero应助科研通管家采纳,获得10
2秒前
JamesPei应助科研通管家采纳,获得10
2秒前
十一应助科研通管家采纳,获得10
2秒前
小马甲应助科研通管家采纳,获得10
2秒前
4秒前
4秒前
麦地娜发布了新的文献求助10
4秒前
乐乐应助蒸盐粥采纳,获得10
5秒前
5秒前
路绪震完成签到,获得积分20
7秒前
7秒前
lin完成签到 ,获得积分10
7秒前
lalali发布了新的文献求助10
8秒前
机智的冰夏完成签到,获得积分10
8秒前
9秒前
尖叫尖叫完成签到,获得积分10
9秒前
10秒前
Tom完成签到 ,获得积分10
10秒前
量子星尘发布了新的文献求助30
11秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5729568
求助须知:如何正确求助?哪些是违规求助? 5319394
关于积分的说明 15317016
捐赠科研通 4876593
什么是DOI,文献DOI怎么找? 2619440
邀请新用户注册赠送积分活动 1568984
关于科研通互助平台的介绍 1525535