Molecular language models: RNNs or transformer?

变压器 计算机科学 人工智能 生物 计算生物学 工程类 电气工程 电压
作者
Yangyang Chen,Zixu Wang,Xiangxiang Zeng,Yayang Li,Pengyong Li,Xiucai Ye,Tetsuya Sakurai
出处
期刊:Briefings in Functional Genomics [Oxford University Press]
卷期号:22 (4): 392-400 被引量:13
标识
DOI:10.1093/bfgp/elad012
摘要

Abstract Language models have shown the capacity to learn complex molecular distributions. In the field of molecular generation, they are designed to explore the distribution of molecules, and previous studies have demonstrated their ability to learn molecule sequences. In the early times, recurrent neural networks (RNNs) were widely used for feature extraction from sequence data and have been used for various molecule generation tasks. In recent years, the attention mechanism for sequence data has become popular. It captures the underlying relationships between words and is widely applied to language models. The Transformer-Layer, a model based on a self-attentive mechanism, also shines the same as the RNN-based model. In this research, we investigated the difference between RNNs and the Transformer-Layer to learn a more complex distribution of molecules. For this purpose, we experimented with three different generative tasks: the distributions of molecules with elevated scores of penalized LogP, multimodal distributions of molecules and the largest molecules in PubChem. We evaluated the models on molecular properties, basic metrics, Tanimoto similarity, etc. In addition, we applied two different representations of the molecule, SMILES and SELFIES. The results show that the two language models can learn complex molecular distributions and SMILES-based representation has better performance than SELFIES. The choice between RNNs and the Transformer-Layer needs to be based on the characteristics of dataset. RNNs work better on data focus on local features and decreases with multidistribution data, while the Transformer-Layer is more suitable when meeting molecular with larger weights and focusing on global features.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
白熊完成签到 ,获得积分10
刚刚
Khalil发布了新的文献求助10
刚刚
一线忧思发布了新的文献求助10
1秒前
leilei发布了新的文献求助10
1秒前
songjiatian完成签到,获得积分10
2秒前
YUNI完成签到,获得积分10
2秒前
123发布了新的文献求助10
2秒前
2秒前
jxuexiong发布了新的文献求助10
3秒前
Owen应助炙热盼兰采纳,获得10
4秒前
二猫完成签到,获得积分10
5秒前
熊姣凤完成签到,获得积分10
5秒前
科研通AI6.1应助YUNI采纳,获得10
6秒前
丰富青文完成签到,获得积分10
6秒前
科研通AI2S应助俊逸寻菡采纳,获得10
6秒前
6秒前
量子星尘发布了新的文献求助10
6秒前
7秒前
量子星尘发布了新的文献求助10
7秒前
8秒前
8秒前
8秒前
9秒前
9秒前
负责的调料汁完成签到,获得积分10
9秒前
贪玩钢铁侠完成签到,获得积分10
9秒前
10秒前
11秒前
11秒前
昏睡的嵩应助佰斯特威采纳,获得50
12秒前
一线忧思完成签到,获得积分10
12秒前
David发布了新的文献求助10
12秒前
库三金发布了新的文献求助10
13秒前
天天快乐应助科研通管家采纳,获得10
13秒前
爆米花应助科研通管家采纳,获得10
13秒前
天天快乐应助科研通管家采纳,获得10
14秒前
LLP发布了新的文献求助10
14秒前
Lny应助科研通管家采纳,获得10
14秒前
爆米花应助科研通管家采纳,获得10
14秒前
打打应助科研通管家采纳,获得10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5784063
求助须知:如何正确求助?哪些是违规求助? 5680443
关于积分的说明 15462954
捐赠科研通 4913367
什么是DOI,文献DOI怎么找? 2644620
邀请新用户注册赠送积分活动 1592452
关于科研通互助平台的介绍 1547078