Molecular language models: RNNs or transformer?

变压器 计算机科学 人工智能 生物 计算生物学 工程类 电气工程 电压
作者
Yangyang Chen,Zixu Wang,Xiangxiang Zeng,Yayang Li,Pengyong Li,Xiucai Ye,Tetsuya Sakurai
出处
期刊:Briefings in Functional Genomics [Oxford University Press]
卷期号:22 (4): 392-400 被引量:13
标识
DOI:10.1093/bfgp/elad012
摘要

Abstract Language models have shown the capacity to learn complex molecular distributions. In the field of molecular generation, they are designed to explore the distribution of molecules, and previous studies have demonstrated their ability to learn molecule sequences. In the early times, recurrent neural networks (RNNs) were widely used for feature extraction from sequence data and have been used for various molecule generation tasks. In recent years, the attention mechanism for sequence data has become popular. It captures the underlying relationships between words and is widely applied to language models. The Transformer-Layer, a model based on a self-attentive mechanism, also shines the same as the RNN-based model. In this research, we investigated the difference between RNNs and the Transformer-Layer to learn a more complex distribution of molecules. For this purpose, we experimented with three different generative tasks: the distributions of molecules with elevated scores of penalized LogP, multimodal distributions of molecules and the largest molecules in PubChem. We evaluated the models on molecular properties, basic metrics, Tanimoto similarity, etc. In addition, we applied two different representations of the molecule, SMILES and SELFIES. The results show that the two language models can learn complex molecular distributions and SMILES-based representation has better performance than SELFIES. The choice between RNNs and the Transformer-Layer needs to be based on the characteristics of dataset. RNNs work better on data focus on local features and decreases with multidistribution data, while the Transformer-Layer is more suitable when meeting molecular with larger weights and focusing on global features.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
高大乌龟完成签到,获得积分10
刚刚
李子不是杏完成签到 ,获得积分10
1秒前
betty2009完成签到,获得积分10
2秒前
高大乌龟发布了新的文献求助10
2秒前
加一点荒谬完成签到,获得积分10
3秒前
RRR完成签到,获得积分10
4秒前
4秒前
猕猴桃发布了新的文献求助10
4秒前
4秒前
ricown发布了新的文献求助30
5秒前
5秒前
6秒前
星辰大海应助MM采纳,获得10
6秒前
64658应助Lin采纳,获得10
6秒前
7秒前
浅夏淡忆完成签到,获得积分20
7秒前
yukinade完成签到,获得积分10
7秒前
微7完成签到,获得积分10
8秒前
cs发布了新的文献求助10
8秒前
123完成签到,获得积分10
8秒前
9秒前
迟暮完成签到 ,获得积分10
9秒前
ED应助雪白的凌翠采纳,获得10
9秒前
9秒前
yar应助雪白的凌翠采纳,获得10
9秒前
64658应助尹小末采纳,获得10
10秒前
10秒前
yukinade发布了新的文献求助10
10秒前
Hello应助高大乌龟采纳,获得10
10秒前
刘子龙发布了新的文献求助10
10秒前
ohno耶耶耶完成签到,获得积分10
11秒前
12秒前
sciboy完成签到,获得积分10
12秒前
up发布了新的文献求助10
12秒前
eleven发布了新的文献求助10
12秒前
可爱的函函应助花生采纳,获得10
13秒前
小蘑菇应助自信夜春采纳,获得10
13秒前
13秒前
13秒前
黙宇循光完成签到 ,获得积分10
13秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987021
求助须知:如何正确求助?哪些是违规求助? 3529365
关于积分的说明 11244629
捐赠科研通 3267729
什么是DOI,文献DOI怎么找? 1803932
邀请新用户注册赠送积分活动 881223
科研通“疑难数据库(出版商)”最低求助积分说明 808635