Molecular language models: RNNs or transformer?

变压器 计算机科学 人工智能 生物 计算生物学 工程类 电气工程 电压
作者
Yangyang Chen,Zixu Wang,Xiangxiang Zeng,Yayang Li,Pengyong Li,Xiucai Ye,Tetsuya Sakurai
出处
期刊:Briefings in Functional Genomics [Oxford University Press]
卷期号:22 (4): 392-400 被引量:13
标识
DOI:10.1093/bfgp/elad012
摘要

Abstract Language models have shown the capacity to learn complex molecular distributions. In the field of molecular generation, they are designed to explore the distribution of molecules, and previous studies have demonstrated their ability to learn molecule sequences. In the early times, recurrent neural networks (RNNs) were widely used for feature extraction from sequence data and have been used for various molecule generation tasks. In recent years, the attention mechanism for sequence data has become popular. It captures the underlying relationships between words and is widely applied to language models. The Transformer-Layer, a model based on a self-attentive mechanism, also shines the same as the RNN-based model. In this research, we investigated the difference between RNNs and the Transformer-Layer to learn a more complex distribution of molecules. For this purpose, we experimented with three different generative tasks: the distributions of molecules with elevated scores of penalized LogP, multimodal distributions of molecules and the largest molecules in PubChem. We evaluated the models on molecular properties, basic metrics, Tanimoto similarity, etc. In addition, we applied two different representations of the molecule, SMILES and SELFIES. The results show that the two language models can learn complex molecular distributions and SMILES-based representation has better performance than SELFIES. The choice between RNNs and the Transformer-Layer needs to be based on the characteristics of dataset. RNNs work better on data focus on local features and decreases with multidistribution data, while the Transformer-Layer is more suitable when meeting molecular with larger weights and focusing on global features.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
张广雪发布了新的文献求助10
刚刚
长情的语风完成签到 ,获得积分10
1秒前
1秒前
小马同学完成签到,获得积分10
2秒前
鲫鱼发布了新的文献求助10
2秒前
ldy完成签到 ,获得积分10
3秒前
DrW完成签到,获得积分0
4秒前
明眸发布了新的文献求助10
4秒前
量子星尘发布了新的文献求助10
4秒前
梁云完成签到,获得积分10
6秒前
乐乐应助Phe采纳,获得10
6秒前
Ava应助小学霸搞科研采纳,获得10
6秒前
limi完成签到 ,获得积分10
6秒前
7秒前
刘志萍完成签到 ,获得积分10
8秒前
11秒前
11秒前
mango完成签到,获得积分10
11秒前
like1994发布了新的文献求助10
13秒前
香蕉觅云应助cc采纳,获得10
13秒前
Phe完成签到,获得积分10
15秒前
16秒前
留胡子的霖完成签到,获得积分10
17秒前
18秒前
19秒前
量子星尘发布了新的文献求助10
19秒前
19秒前
Mia完成签到,获得积分10
20秒前
宋宋宋2完成签到,获得积分10
20秒前
顾矜应助keeptg采纳,获得10
20秒前
c14在读文献完成签到,获得积分10
20秒前
7907完成签到,获得积分10
20秒前
21秒前
haha完成签到 ,获得积分10
21秒前
高脚菜发布了新的文献求助10
21秒前
哈哈完成签到,获得积分10
21秒前
21秒前
魔幻笑容发布了新的文献求助10
22秒前
今昔发布了新的文献求助10
22秒前
付小源完成签到,获得积分10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 871
Alloy Phase Diagrams 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5419574
求助须知:如何正确求助?哪些是违规求助? 4534806
关于积分的说明 14147001
捐赠科研通 4451480
什么是DOI,文献DOI怎么找? 2441759
邀请新用户注册赠送积分活动 1433376
关于科研通互助平台的介绍 1410616