Molecular language models: RNNs or transformer?

变压器 计算机科学 人工智能 生物 计算生物学 工程类 电气工程 电压
作者
Yangyang Chen,Zixu Wang,Xiangxiang Zeng,Yayang Li,Pengyong Li,Xiucai Ye,Tetsuya Sakurai
出处
期刊:Briefings in Functional Genomics [Oxford University Press]
卷期号:22 (4): 392-400 被引量:13
标识
DOI:10.1093/bfgp/elad012
摘要

Abstract Language models have shown the capacity to learn complex molecular distributions. In the field of molecular generation, they are designed to explore the distribution of molecules, and previous studies have demonstrated their ability to learn molecule sequences. In the early times, recurrent neural networks (RNNs) were widely used for feature extraction from sequence data and have been used for various molecule generation tasks. In recent years, the attention mechanism for sequence data has become popular. It captures the underlying relationships between words and is widely applied to language models. The Transformer-Layer, a model based on a self-attentive mechanism, also shines the same as the RNN-based model. In this research, we investigated the difference between RNNs and the Transformer-Layer to learn a more complex distribution of molecules. For this purpose, we experimented with three different generative tasks: the distributions of molecules with elevated scores of penalized LogP, multimodal distributions of molecules and the largest molecules in PubChem. We evaluated the models on molecular properties, basic metrics, Tanimoto similarity, etc. In addition, we applied two different representations of the molecule, SMILES and SELFIES. The results show that the two language models can learn complex molecular distributions and SMILES-based representation has better performance than SELFIES. The choice between RNNs and the Transformer-Layer needs to be based on the characteristics of dataset. RNNs work better on data focus on local features and decreases with multidistribution data, while the Transformer-Layer is more suitable when meeting molecular with larger weights and focusing on global features.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
朴素的疾完成签到,获得积分20
1秒前
leon完成签到,获得积分10
2秒前
RenYanqiang发布了新的文献求助10
2秒前
坚强夜白完成签到,获得积分10
3秒前
回家睡觉完成签到,获得积分10
3秒前
3秒前
3秒前
4秒前
5秒前
5秒前
露露露完成签到,获得积分10
6秒前
accept完成签到,获得积分10
7秒前
7秒前
搜集达人应助王一帆采纳,获得10
9秒前
大个应助caidan采纳,获得10
9秒前
9秒前
安详忆梅发布了新的文献求助10
10秒前
10秒前
没有昵称完成签到,获得积分10
10秒前
量子星尘发布了新的文献求助10
10秒前
领导范儿应助跳跃美女采纳,获得10
11秒前
11秒前
这位同学不知道叫什么好完成签到,获得积分10
11秒前
最初的远方完成签到,获得积分10
11秒前
布噜噜噜噜完成签到,获得积分10
11秒前
ghhhn完成签到,获得积分10
13秒前
kf033发布了新的文献求助10
13秒前
小丫应助吃葡萄皮采纳,获得30
14秒前
优美紫槐应助Jankin采纳,获得10
14秒前
RenYanqiang完成签到,获得积分10
15秒前
16秒前
hfgeyt完成签到,获得积分10
16秒前
犹豫的芝麻完成签到 ,获得积分10
17秒前
优雅灵波完成签到,获得积分20
17秒前
jin完成签到,获得积分20
17秒前
18秒前
语恒发布了新的文献求助10
18秒前
20秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5743404
求助须知:如何正确求助?哪些是违规求助? 5413822
关于积分的说明 15347458
捐赠科研通 4884191
什么是DOI,文献DOI怎么找? 2625636
邀请新用户注册赠送积分活动 1574492
关于科研通互助平台的介绍 1531400