Molecular language models: RNNs or transformer?

变压器 计算机科学 人工智能 生物 计算生物学 工程类 电气工程 电压
作者
Yangyang Chen,Zixu Wang,Xiangxiang Zeng,Yayang Li,Pengyong Li,Xiucai Ye,Tetsuya Sakurai
出处
期刊:Briefings in Functional Genomics [Oxford University Press]
卷期号:22 (4): 392-400 被引量:13
标识
DOI:10.1093/bfgp/elad012
摘要

Abstract Language models have shown the capacity to learn complex molecular distributions. In the field of molecular generation, they are designed to explore the distribution of molecules, and previous studies have demonstrated their ability to learn molecule sequences. In the early times, recurrent neural networks (RNNs) were widely used for feature extraction from sequence data and have been used for various molecule generation tasks. In recent years, the attention mechanism for sequence data has become popular. It captures the underlying relationships between words and is widely applied to language models. The Transformer-Layer, a model based on a self-attentive mechanism, also shines the same as the RNN-based model. In this research, we investigated the difference between RNNs and the Transformer-Layer to learn a more complex distribution of molecules. For this purpose, we experimented with three different generative tasks: the distributions of molecules with elevated scores of penalized LogP, multimodal distributions of molecules and the largest molecules in PubChem. We evaluated the models on molecular properties, basic metrics, Tanimoto similarity, etc. In addition, we applied two different representations of the molecule, SMILES and SELFIES. The results show that the two language models can learn complex molecular distributions and SMILES-based representation has better performance than SELFIES. The choice between RNNs and the Transformer-Layer needs to be based on the characteristics of dataset. RNNs work better on data focus on local features and decreases with multidistribution data, while the Transformer-Layer is more suitable when meeting molecular with larger weights and focusing on global features.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Owen应助啊擦删除采纳,获得10
3秒前
3秒前
王清水发布了新的文献求助10
4秒前
SciGPT应助pp采纳,获得10
4秒前
FashionBoy应助huhuan采纳,获得10
4秒前
5秒前
5秒前
6秒前
香蕉觅云应助zbxwlz采纳,获得10
7秒前
Pony发布了新的文献求助10
7秒前
柏康娜发布了新的文献求助10
7秒前
remix完成签到,获得积分10
7秒前
豆芽发布了新的文献求助10
8秒前
1235完成签到,获得积分10
9秒前
蒋永军发布了新的文献求助20
9秒前
一一发布了新的文献求助10
9秒前
量子星尘发布了新的文献求助10
10秒前
Chaos完成签到,获得积分10
10秒前
舒心的久完成签到 ,获得积分10
11秒前
隐形曼青应助DAL采纳,获得10
11秒前
11秒前
FashionBoy应助Sylwren采纳,获得10
12秒前
英俊的铭应助zm采纳,获得10
13秒前
14秒前
小乔完成签到,获得积分10
14秒前
正太低音炮完成签到,获得积分10
14秒前
星辰大海应助活力惜寒采纳,获得10
17秒前
18秒前
健壮的弼完成签到,获得积分10
18秒前
18秒前
邱老黑完成签到,获得积分20
18秒前
萨尔莫斯发布了新的文献求助10
19秒前
柏康娜完成签到,获得积分10
20秒前
Ran发布了新的文献求助10
21秒前
21秒前
虚幻百川应助邱老黑采纳,获得10
22秒前
Sylwren发布了新的文献求助10
23秒前
24秒前
24秒前
高分求助中
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5583465
求助须知:如何正确求助?哪些是违规求助? 4667303
关于积分的说明 14766350
捐赠科研通 4609471
什么是DOI,文献DOI怎么找? 2529219
邀请新用户注册赠送积分活动 1498433
关于科研通互助平台的介绍 1467061