Molecular language models: RNNs or transformer?

变压器 计算机科学 人工智能 生物 计算生物学 工程类 电气工程 电压
作者
Yangyang Chen,Zixu Wang,Xiangxiang Zeng,Yayang Li,Pengyong Li,Xiucai Ye,Tetsuya Sakurai
出处
期刊:Briefings in Functional Genomics [Oxford University Press]
卷期号:22 (4): 392-400 被引量:13
标识
DOI:10.1093/bfgp/elad012
摘要

Abstract Language models have shown the capacity to learn complex molecular distributions. In the field of molecular generation, they are designed to explore the distribution of molecules, and previous studies have demonstrated their ability to learn molecule sequences. In the early times, recurrent neural networks (RNNs) were widely used for feature extraction from sequence data and have been used for various molecule generation tasks. In recent years, the attention mechanism for sequence data has become popular. It captures the underlying relationships between words and is widely applied to language models. The Transformer-Layer, a model based on a self-attentive mechanism, also shines the same as the RNN-based model. In this research, we investigated the difference between RNNs and the Transformer-Layer to learn a more complex distribution of molecules. For this purpose, we experimented with three different generative tasks: the distributions of molecules with elevated scores of penalized LogP, multimodal distributions of molecules and the largest molecules in PubChem. We evaluated the models on molecular properties, basic metrics, Tanimoto similarity, etc. In addition, we applied two different representations of the molecule, SMILES and SELFIES. The results show that the two language models can learn complex molecular distributions and SMILES-based representation has better performance than SELFIES. The choice between RNNs and the Transformer-Layer needs to be based on the characteristics of dataset. RNNs work better on data focus on local features and decreases with multidistribution data, while the Transformer-Layer is more suitable when meeting molecular with larger weights and focusing on global features.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
慕青应助恰好喜欢采纳,获得10
刚刚
刚刚
111关闭了111文献求助
1秒前
zz驳回了丘比特应助
1秒前
孤独蘑菇发布了新的文献求助50
2秒前
2秒前
鸽子发布了新的文献求助10
3秒前
WWXWWX发布了新的文献求助10
3秒前
3秒前
烟花应助甄昕采纳,获得10
4秒前
rediculoussss完成签到,获得积分10
4秒前
JamesPei应助司徒迎曼采纳,获得10
4秒前
5秒前
英姑应助酷酷乐瑶采纳,获得10
6秒前
情怀应助咸鱼采纳,获得10
6秒前
十六日呀发布了新的文献求助10
7秒前
英俊的铭应助骆怀薇采纳,获得10
7秒前
7秒前
等待凡桃发布了新的文献求助10
7秒前
缝纫工发布了新的文献求助10
8秒前
小林是我完成签到,获得积分20
8秒前
9秒前
小子关注了科研通微信公众号
9秒前
orixero应助怠慢采纳,获得10
9秒前
9秒前
10秒前
量子星尘发布了新的文献求助10
10秒前
FL完成签到,获得积分10
10秒前
10秒前
zhang完成签到 ,获得积分10
10秒前
10秒前
yiyao发布了新的文献求助20
11秒前
今后应助111采纳,获得10
12秒前
爆米花应助月洱2024采纳,获得10
12秒前
orixero应助李欣洳采纳,获得10
13秒前
高乾飞完成签到,获得积分10
13秒前
13秒前
modujuan完成签到,获得积分10
13秒前
科研汪完成签到,获得积分10
14秒前
闫晓涵发布了新的文献求助10
14秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5693319
求助须知:如何正确求助?哪些是违规求助? 5092294
关于积分的说明 15211264
捐赠科研通 4850295
什么是DOI,文献DOI怎么找? 2601689
邀请新用户注册赠送积分活动 1553480
关于科研通互助平台的介绍 1511450