Comparing monomodal traditional writing and digital multimodal composing in EAP classrooms: Linguistic performance and writing development

印为红字的 论证理论 第二语言写作 写作评估 计算机科学 数学教育 心理学 语言学 第二语言 哲学
作者
YouJin Kim,Diane Belcher,Carter Peyton
出处
期刊:Journal of English for Academic Purposes [Elsevier BV]
卷期号:64: 101247-101247 被引量:13
标识
DOI:10.1016/j.jeap.2023.101247
摘要

In response to mixed perceptions about the digital multimodal composing (DMC) approach to conceptualizing and teaching second language (L2) writing, the purpose of the current study is to compare students' linguistic performance on traditional monomodal writing and DMC tasks, as well as writing development over time under traditional and DMC instructional conditions. A total of 41 Korean university English as a foreign language (EFL) students were randomly assigned to two instructional groups: traditional writing and DMC. Over one semester, both the DMC and the traditional writing groups completed TOEFL-style independent writing pretests and posttests, and depending on their intervention condition, they completed either monomodal writing or DMC tasks for two elemental genres (causal analysis and argumentation). For the first research question, focused on output of traditional writing and DMC tasks, the two groups' language use on each of the two assigned genres (causal analysis and argumentation) was analyzed separately, and their linguistic performance was compared using independent t-tests. For the second research question, the pretest and posttest essays were scored using an analytic rubric focused on content, organization and language, and the two groups’ timed writing performance was compared using linear mixed effect models. The findings indicated that students produced longer texts for DMC tasks, and that there were significant gains in writing development over time for both DMC and traditional writing instructed groups. The DMC-integrated group, however, showed greater gains. Pedagogical implications for the use of DMC in L2 writing instruction are discussed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
芜湖发布了新的文献求助10
1秒前
1秒前
小虾米发布了新的文献求助10
3秒前
LINxu发布了新的文献求助10
4秒前
5秒前
海棠发布了新的文献求助10
6秒前
性静H情逸发布了新的文献求助10
8秒前
852应助心灵美的雍采纳,获得10
9秒前
9秒前
11秒前
小虾米完成签到,获得积分10
12秒前
传奇3应助bread采纳,获得10
13秒前
何必呢发布了新的文献求助10
13秒前
14秒前
英姑应助老演员采纳,获得10
16秒前
芜湖发布了新的文献求助10
16秒前
LINxu完成签到,获得积分10
17秒前
性静H情逸完成签到,获得积分10
17秒前
派大星发布了新的文献求助20
19秒前
艾科研完成签到,获得积分10
19秒前
吴大语完成签到,获得积分10
20秒前
21秒前
梓然完成签到,获得积分10
22秒前
小小完成签到,获得积分10
23秒前
24秒前
26秒前
叶子发布了新的文献求助10
26秒前
27秒前
科研通AI5应助优雅无极采纳,获得10
28秒前
废名发布了新的文献求助10
28秒前
29秒前
29秒前
大气的玉米完成签到,获得积分10
30秒前
30秒前
mimi发布了新的文献求助10
33秒前
33秒前
33秒前
33秒前
高分求助中
All the Birds of the World 1000
IZELTABART TAPATANSINE 500
GNSS Applications in Earth and Space Observations 300
Armour of the english knight 1400-1450 300
Handbook of Laboratory Animal Science 300
Not Equal : Towards an International Law of Finance 260
Beginners Guide To Clinical Medicine (Pb 2020): A Systematic Guide To Clinical Medicine, Two-Vol Set 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3714764
求助须知:如何正确求助?哪些是违规求助? 3262033
关于积分的说明 9921854
捐赠科研通 2975718
什么是DOI,文献DOI怎么找? 1631852
邀请新用户注册赠送积分活动 774167
科研通“疑难数据库(出版商)”最低求助积分说明 744742