Competition between phonon-vacancy and four-phonon scattering in cubic boron arsenide by machine learning interatomic potential

声子 凝聚态物理 空位缺陷 材料科学 声子散射 热导率 散射 物理 量子力学 复合材料
作者
Jialin Tang,Guotai Li,Qi Wang,Jiongzhi Zheng,Lin Cheng,Ruiqiang Guo
出处
期刊:Physical Review Materials [American Physical Society]
卷期号:7 (4) 被引量:8
标识
DOI:10.1103/physrevmaterials.7.044601
摘要

Point defects can strongly suppress the thermal conductivity $\ensuremath{\kappa}$ of solid materials, which is crucial for a broad range of applications, such as thermal management of electronic devices and thermoelectrics. Understanding thermal transport in materials containing point defects often relies on atomistic simulations based on density functional theory (DFT) or empirical potentials (EPs). However, modeling thermal transport in defective materials using DFT is very computationally expensive or even prohibitive due to the breaking of crystal symmetry while EPs suffer from low accuracy. Recently, machine learning has been applied to the development of interatomic potentials, offering opportunities to model defective systems accurately and efficiently. Here, we present a Gaussian approximation potential (GAP) developed for crystalline cubic boron arsenide (c-BAs) with vacancies, which can achieve DFT-level accuracy in predicting its $\ensuremath{\kappa}$ and phonon transport properties at four orders of magnitude reduced computational cost, especially for phonon-vacancy and four-phonon scatterings. Particularly, we applied the GAP to investigate the effect of vacancies on the $\ensuremath{\kappa}$ of c-BAs by considering both three-phonon and four-phonon scattering. Special attention was paid to the competition between phonon-vacancy and four-phonon scattering, which tend to decrease and increase the temperature dependence of $\ensuremath{\kappa}$, respectively. Specifically, when the vacancy concentration is much lower than $0.07%$ $(2.56\ifmmode\times\else\texttimes\fi{}{10}^{19}\phantom{\rule{4pt}{0ex}}{\mathrm{cm}}^{\ensuremath{-}3})$, four-phonon scattering plays stronger roles in determining the temperature dependence of $\ensuremath{\kappa}$. As the vacancy concentration increases to $0.07%$, the temperature dependence of $\ensuremath{\kappa}$ becomes close to that considering only three-phonon scattering, indicating the comparable effect of phonon-vacancy and four-phonon scattering. As the vacancy concentration further increases, the phonon-vacancy scattering becomes more dominant and pushes the $\ensuremath{\kappa}$ towards a temperature-independent behavior. Our work deepens the understanding of the phonon scattering landscape in c-BAs with vacancies and will be helpful for tailoring its thermal properties. Atomistic simulations combined with machine learning interatomic potentials are expected to be able to greatly advance the understanding of thermal transport in defective materials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
善学以致用应助南念采纳,获得10
3秒前
简单以冬发布了新的文献求助10
3秒前
4秒前
香蕉觅云应助烫的汤采纳,获得10
4秒前
领导范儿应助Jane采纳,获得10
4秒前
睡觉哥发布了新的文献求助10
4秒前
失眠的缘郡完成签到,获得积分20
7秒前
8秒前
yy发布了新的文献求助10
9秒前
Akim应助心灵的守望采纳,获得10
9秒前
把心放在肚里应助LXY采纳,获得10
9秒前
科目三应助湖医小朱采纳,获得30
9秒前
Charis完成签到,获得积分10
9秒前
今后应助jimskylxk采纳,获得10
10秒前
Biophilia发布了新的文献求助50
11秒前
小琦琦完成签到,获得积分10
12秒前
WENc发布了新的文献求助10
13秒前
15秒前
多情怜蕾完成签到,获得积分10
15秒前
马里奥完成签到,获得积分10
16秒前
kuoping完成签到,获得积分10
16秒前
Lucas应助马家辉采纳,获得10
16秒前
17秒前
晚风完成签到,获得积分10
17秒前
17秒前
18秒前
19秒前
19秒前
无名老大应助西奥采纳,获得30
19秒前
20秒前
21秒前
派大星应助盛弟采纳,获得10
21秒前
科研学习小王子完成签到,获得积分10
21秒前
轩贝完成签到,获得积分10
22秒前
22秒前
22秒前
刘雯发布了新的文献求助10
23秒前
南念发布了新的文献求助10
23秒前
周周发布了新的文献求助30
23秒前
危机的寒烟完成签到,获得积分10
23秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Devlopment of GaN Resonant Cavity LEDs 666
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3454924
求助须知:如何正确求助?哪些是违规求助? 3050185
关于积分的说明 9020562
捐赠科研通 2738826
什么是DOI,文献DOI怎么找? 1502304
科研通“疑难数据库(出版商)”最低求助积分说明 694480
邀请新用户注册赠送积分活动 693178