Competition between phonon-vacancy and four-phonon scattering in cubic boron arsenide by machine learning interatomic potential

声子 凝聚态物理 空位缺陷 材料科学 声子散射 热导率 散射 物理 量子力学 复合材料
作者
Jialin Tang,Guotai Li,Qi Wang,Jiongzhi Zheng,Lin Cheng,Ruiqiang Guo
出处
期刊:Physical Review Materials [American Physical Society]
卷期号:7 (4) 被引量:8
标识
DOI:10.1103/physrevmaterials.7.044601
摘要

Point defects can strongly suppress the thermal conductivity $\ensuremath{\kappa}$ of solid materials, which is crucial for a broad range of applications, such as thermal management of electronic devices and thermoelectrics. Understanding thermal transport in materials containing point defects often relies on atomistic simulations based on density functional theory (DFT) or empirical potentials (EPs). However, modeling thermal transport in defective materials using DFT is very computationally expensive or even prohibitive due to the breaking of crystal symmetry while EPs suffer from low accuracy. Recently, machine learning has been applied to the development of interatomic potentials, offering opportunities to model defective systems accurately and efficiently. Here, we present a Gaussian approximation potential (GAP) developed for crystalline cubic boron arsenide (c-BAs) with vacancies, which can achieve DFT-level accuracy in predicting its $\ensuremath{\kappa}$ and phonon transport properties at four orders of magnitude reduced computational cost, especially for phonon-vacancy and four-phonon scatterings. Particularly, we applied the GAP to investigate the effect of vacancies on the $\ensuremath{\kappa}$ of c-BAs by considering both three-phonon and four-phonon scattering. Special attention was paid to the competition between phonon-vacancy and four-phonon scattering, which tend to decrease and increase the temperature dependence of $\ensuremath{\kappa}$, respectively. Specifically, when the vacancy concentration is much lower than $0.07%$ $(2.56\ifmmode\times\else\texttimes\fi{}{10}^{19}\phantom{\rule{4pt}{0ex}}{\mathrm{cm}}^{\ensuremath{-}3})$, four-phonon scattering plays stronger roles in determining the temperature dependence of $\ensuremath{\kappa}$. As the vacancy concentration increases to $0.07%$, the temperature dependence of $\ensuremath{\kappa}$ becomes close to that considering only three-phonon scattering, indicating the comparable effect of phonon-vacancy and four-phonon scattering. As the vacancy concentration further increases, the phonon-vacancy scattering becomes more dominant and pushes the $\ensuremath{\kappa}$ towards a temperature-independent behavior. Our work deepens the understanding of the phonon scattering landscape in c-BAs with vacancies and will be helpful for tailoring its thermal properties. Atomistic simulations combined with machine learning interatomic potentials are expected to be able to greatly advance the understanding of thermal transport in defective materials.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ziyou发布了新的文献求助10
1秒前
彭于晏应助jergen采纳,获得10
1秒前
Jiangmz完成签到,获得积分10
1秒前
smart发布了新的文献求助10
1秒前
bkagyin应助狂野元枫采纳,获得10
1秒前
鱼骨头发布了新的文献求助10
1秒前
英俊的涵易完成签到,获得积分10
1秒前
1秒前
无奈皮卡丘完成签到,获得积分10
1秒前
1秒前
斯文败类应助Rae采纳,获得10
2秒前
slx完成签到,获得积分10
2秒前
今后应助林梓采纳,获得10
2秒前
稞小弟发布了新的文献求助50
2秒前
2秒前
2秒前
Mrtuo完成签到,获得积分10
3秒前
量子星尘发布了新的文献求助10
4秒前
积极的黑猫完成签到,获得积分10
4秒前
科研通AI6应助胡咔咔采纳,获得10
4秒前
4秒前
重要难摧完成签到,获得积分10
5秒前
5秒前
佩琪完成签到,获得积分10
6秒前
等待的剑身完成签到,获得积分10
7秒前
蒋磊给蒋磊的求助进行了留言
7秒前
lyh发布了新的文献求助10
8秒前
8秒前
笑看风云完成签到,获得积分10
8秒前
9秒前
9秒前
英吉利25发布了新的文献求助10
9秒前
9秒前
9秒前
10秒前
Linn发布了新的文献求助10
10秒前
南敏株完成签到,获得积分10
10秒前
11秒前
11秒前
XZ发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1400
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5513281
求助须知:如何正确求助?哪些是违规求助? 4607602
关于积分的说明 14505891
捐赠科研通 4543161
什么是DOI,文献DOI怎么找? 2489360
邀请新用户注册赠送积分活动 1471343
关于科研通互助平台的介绍 1443372