Competition between phonon-vacancy and four-phonon scattering in cubic boron arsenide by machine learning interatomic potential

声子 凝聚态物理 空位缺陷 材料科学 声子散射 热导率 散射 物理 量子力学 复合材料
作者
Jialin Tang,Guotai Li,Qi Wang,Jiongzhi Zheng,Lin Cheng,Ruiqiang Guo
出处
期刊:Physical Review Materials [American Physical Society]
卷期号:7 (4) 被引量:8
标识
DOI:10.1103/physrevmaterials.7.044601
摘要

Point defects can strongly suppress the thermal conductivity $\ensuremath{\kappa}$ of solid materials, which is crucial for a broad range of applications, such as thermal management of electronic devices and thermoelectrics. Understanding thermal transport in materials containing point defects often relies on atomistic simulations based on density functional theory (DFT) or empirical potentials (EPs). However, modeling thermal transport in defective materials using DFT is very computationally expensive or even prohibitive due to the breaking of crystal symmetry while EPs suffer from low accuracy. Recently, machine learning has been applied to the development of interatomic potentials, offering opportunities to model defective systems accurately and efficiently. Here, we present a Gaussian approximation potential (GAP) developed for crystalline cubic boron arsenide (c-BAs) with vacancies, which can achieve DFT-level accuracy in predicting its $\ensuremath{\kappa}$ and phonon transport properties at four orders of magnitude reduced computational cost, especially for phonon-vacancy and four-phonon scatterings. Particularly, we applied the GAP to investigate the effect of vacancies on the $\ensuremath{\kappa}$ of c-BAs by considering both three-phonon and four-phonon scattering. Special attention was paid to the competition between phonon-vacancy and four-phonon scattering, which tend to decrease and increase the temperature dependence of $\ensuremath{\kappa}$, respectively. Specifically, when the vacancy concentration is much lower than $0.07%$ $(2.56\ifmmode\times\else\texttimes\fi{}{10}^{19}\phantom{\rule{4pt}{0ex}}{\mathrm{cm}}^{\ensuremath{-}3})$, four-phonon scattering plays stronger roles in determining the temperature dependence of $\ensuremath{\kappa}$. As the vacancy concentration increases to $0.07%$, the temperature dependence of $\ensuremath{\kappa}$ becomes close to that considering only three-phonon scattering, indicating the comparable effect of phonon-vacancy and four-phonon scattering. As the vacancy concentration further increases, the phonon-vacancy scattering becomes more dominant and pushes the $\ensuremath{\kappa}$ towards a temperature-independent behavior. Our work deepens the understanding of the phonon scattering landscape in c-BAs with vacancies and will be helpful for tailoring its thermal properties. Atomistic simulations combined with machine learning interatomic potentials are expected to be able to greatly advance the understanding of thermal transport in defective materials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
佟彦成完成签到,获得积分10
1秒前
1秒前
2秒前
Orange应助林布林采纳,获得10
3秒前
云星天际发布了新的文献求助10
3秒前
江江完成签到,获得积分10
3秒前
传奇3应助马佳琪采纳,获得10
4秒前
相信柯学完成签到,获得积分10
4秒前
shiwo110发布了新的文献求助10
5秒前
5秒前
相信柯学发布了新的文献求助10
7秒前
文茵发布了新的文献求助10
7秒前
8秒前
8秒前
8秒前
8秒前
8秒前
SYLH应助科研通管家采纳,获得20
8秒前
8秒前
8秒前
8秒前
8秒前
Jasper应助科研通管家采纳,获得10
8秒前
Lc应助jszhoucl采纳,获得10
11秒前
11秒前
希望天下0贩的0应助鲤跃采纳,获得10
13秒前
云星天际完成签到,获得积分10
14秒前
李莫凡发布了新的文献求助10
14秒前
小杨爱吃羊完成签到 ,获得积分10
14秒前
18秒前
19秒前
充电宝应助123采纳,获得30
19秒前
对不棋发布了新的文献求助10
20秒前
baifeicao发布了新的文献求助10
22秒前
nature完成签到 ,获得积分10
24秒前
25秒前
27秒前
30秒前
30秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3993059
求助须知:如何正确求助?哪些是违规求助? 3533948
关于积分的说明 11264188
捐赠科研通 3273624
什么是DOI,文献DOI怎么找? 1806134
邀请新用户注册赠送积分活动 882991
科研通“疑难数据库(出版商)”最低求助积分说明 809629