Towards accurate individual tree parameters estimation in dense forest: optimized coarse-to-fine algorithms for registering UAV and terrestrial LiDAR data

激光雷达 均方误差 遥感 胸径 树(集合论) 牙冠(牙科) 森林资源清查 树冠 天蓬 数学 激光扫描 测距 算法 森林经营 林业 统计 地理 激光器 大地测量学 医学 数学分析 物理 牙科 考古 光学
作者
Yuting Zhao,Jungho Im,Zhen Zhen,Yinghui Zhao
出处
期刊:Giscience & Remote Sensing [Taylor & Francis]
卷期号:60 (1) 被引量:10
标识
DOI:10.1080/15481603.2023.2197281
摘要

Accurate quantification of individual tree parameters is vital for precise forest inventory and sustainable forest management. However, in dense forests, terrestrial laser scanning (TLS), which can provide accurate and detailed forest structural measurements, is limited to capturing the complete tree structure due to the lack of upper canopy views, resulting in an underestimation of tree height. Combining TLS with unmanned aerial vehicle laser scanning (ULS) is an effective way to overcome this limitation. Thus, it is vital to register multi-platform Light Detection and Ranging (LiDAR) data for various forestry applications. This study proposed three automated and nearly parameter-free optimized coarse-to-fine algorithms (i.e. FPFH-based optimized ICP (F-OICP), RANSAC-based optimized ICP (R-OICP), and NDT-based optimized ICP (N-OICP)) to accurately register TLS and ULS point data for individual tree crown delineation and parameters (diameter at breast height (DBH) and tree height) estimations in different forest types (i.e. coniferous, mixed broadleaf-coniferous, and broadleaf). Results showed that the proposed optimized algorithms had a good registration performance, with an average RMSE of about 8.3 cm for the transformation error; and obtained stable and high accuracies of individual tree crown delineation (ITCD) (F-score: 0.7), DBH (R2: 0.9, RMSE <1.85 cm), and tree height (R2: 0.8, RMSE <0.37 m) estimates for three forest types. F-OICP performed the best in tree height estimation, reducing the RMSE by 48%, 12%, and 12% compared to iterative closest point (ICP), R-OICP, and N-OICP, respectively. Stand type significantly impacted ITCD and individual tree parameter estimations. The ITCD and DBH estimation accuracy of coniferous forests were marginally higher than those of broadleaf forests (F-score: 0.78 vs. 0.78, DBH RMSE: 1.57 vs. 1.74), while those of mixed broadleaf-coniferous forests were the lowest (F-score: 0.71, DBH RMSE: 2.19). The accuracies of tree height estimates in coniferous forests were the highest (R2: 0.87, RMSE: 0.21 m), followed by mixed broadleaf-coniferous (R2: 0.84, RMSE: 0.37 m) and broadleaf (R2: 0.84, RMSE: 0.44 m) forests. This work developed automated, nearly parameter-free, and effective registration algorithms and recommended F-OICP to be the most appropriate for dense forests (i.e. natural secondary forests). The optimized registration algorithms facilitate the ability for the synergistic use of multi-platform LiDAR and offer appealing and promising approaches for future accurate quantification of individual tree parameters, efficient forest inventories, and sustainable forest management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wsx4321应助Totravel采纳,获得50
刚刚
1秒前
Ray完成签到,获得积分10
1秒前
KKKK发布了新的文献求助10
1秒前
1秒前
Kinkin发布了新的文献求助200
2秒前
2秒前
ChenCC发布了新的文献求助10
2秒前
2秒前
3秒前
4秒前
李健应助minel采纳,获得10
5秒前
董翰发布了新的文献求助10
5秒前
小鬼发布了新的文献求助10
6秒前
Sam完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
7秒前
握不住的沙完成签到,获得积分10
7秒前
南乔发布了新的文献求助10
7秒前
活力迎梦发布了新的文献求助10
7秒前
珂颜堂AI应助仙林AK47采纳,获得40
7秒前
研友_VZG7GZ应助忧虑的鹭洋采纳,获得10
8秒前
8秒前
心怡完成签到,获得积分10
9秒前
顾矜应助smartpig02采纳,获得50
10秒前
zybbb发布了新的文献求助20
10秒前
10秒前
大个应助时飞采纳,获得10
11秒前
LiYuan发布了新的文献求助10
11秒前
传奇3应助冷艳冷安采纳,获得10
12秒前
12秒前
ucjudgo完成签到,获得积分10
12秒前
bkagyin应助gu123采纳,获得10
12秒前
ding应助yawngale采纳,获得10
12秒前
ChenCC完成签到,获得积分10
12秒前
hwj完成签到 ,获得积分10
13秒前
13秒前
香蕉觅云应助贝贝采纳,获得10
13秒前
13秒前
追魂墨迹完成签到,获得积分10
14秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
2025山东省直机关硬笔书法展示活动获奖名单 500
Energy-Size Reduction Relationships In Comminution 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4939388
求助须知:如何正确求助?哪些是违规求助? 4205811
关于积分的说明 13071712
捐赠科研通 3984189
什么是DOI,文献DOI怎么找? 2181538
邀请新用户注册赠送积分活动 1197342
关于科研通互助平台的介绍 1109574