Towards accurate individual tree parameters estimation in dense forest: optimized coarse-to-fine algorithms for registering UAV and terrestrial LiDAR data

激光雷达 均方误差 遥感 胸径 树(集合论) 牙冠(牙科) 森林资源清查 树冠 天蓬 数学 激光扫描 测距 算法 森林经营 林业 统计 地理 激光器 大地测量学 光学 物理 数学分析 考古 牙科 医学
作者
Yuting Zhao,Jungho Im,Zhen Zhen,Yinghui Zhao
出处
期刊:Giscience & Remote Sensing [Informa]
卷期号:60 (1) 被引量:10
标识
DOI:10.1080/15481603.2023.2197281
摘要

Accurate quantification of individual tree parameters is vital for precise forest inventory and sustainable forest management. However, in dense forests, terrestrial laser scanning (TLS), which can provide accurate and detailed forest structural measurements, is limited to capturing the complete tree structure due to the lack of upper canopy views, resulting in an underestimation of tree height. Combining TLS with unmanned aerial vehicle laser scanning (ULS) is an effective way to overcome this limitation. Thus, it is vital to register multi-platform Light Detection and Ranging (LiDAR) data for various forestry applications. This study proposed three automated and nearly parameter-free optimized coarse-to-fine algorithms (i.e. FPFH-based optimized ICP (F-OICP), RANSAC-based optimized ICP (R-OICP), and NDT-based optimized ICP (N-OICP)) to accurately register TLS and ULS point data for individual tree crown delineation and parameters (diameter at breast height (DBH) and tree height) estimations in different forest types (i.e. coniferous, mixed broadleaf-coniferous, and broadleaf). Results showed that the proposed optimized algorithms had a good registration performance, with an average RMSE of about 8.3 cm for the transformation error; and obtained stable and high accuracies of individual tree crown delineation (ITCD) (F-score: 0.7), DBH (R2: 0.9, RMSE <1.85 cm), and tree height (R2: 0.8, RMSE <0.37 m) estimates for three forest types. F-OICP performed the best in tree height estimation, reducing the RMSE by 48%, 12%, and 12% compared to iterative closest point (ICP), R-OICP, and N-OICP, respectively. Stand type significantly impacted ITCD and individual tree parameter estimations. The ITCD and DBH estimation accuracy of coniferous forests were marginally higher than those of broadleaf forests (F-score: 0.78 vs. 0.78, DBH RMSE: 1.57 vs. 1.74), while those of mixed broadleaf-coniferous forests were the lowest (F-score: 0.71, DBH RMSE: 2.19). The accuracies of tree height estimates in coniferous forests were the highest (R2: 0.87, RMSE: 0.21 m), followed by mixed broadleaf-coniferous (R2: 0.84, RMSE: 0.37 m) and broadleaf (R2: 0.84, RMSE: 0.44 m) forests. This work developed automated, nearly parameter-free, and effective registration algorithms and recommended F-OICP to be the most appropriate for dense forests (i.e. natural secondary forests). The optimized registration algorithms facilitate the ability for the synergistic use of multi-platform LiDAR and offer appealing and promising approaches for future accurate quantification of individual tree parameters, efficient forest inventories, and sustainable forest management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ding应助zhaoman采纳,获得10
刚刚
英姑应助专注寻菱采纳,获得10
1秒前
1秒前
jjjwln发布了新的文献求助10
3秒前
yyyy完成签到,获得积分10
4秒前
4秒前
5秒前
6秒前
6秒前
7秒前
完美世界应助疯狂的迪子采纳,获得10
9秒前
9秒前
10秒前
夏夏发布了新的文献求助10
10秒前
11秒前
迷路的半双完成签到 ,获得积分10
11秒前
12秒前
12秒前
13秒前
脑洞疼应助lemon采纳,获得10
14秒前
完美世界应助岑岑岑采纳,获得10
15秒前
专注寻菱发布了新的文献求助10
18秒前
墨白完成签到 ,获得积分10
19秒前
19秒前
19秒前
20秒前
21秒前
zhaoman发布了新的文献求助10
23秒前
25秒前
天才小张完成签到,获得积分20
25秒前
新雨发布了新的文献求助20
25秒前
25秒前
26秒前
葫芦芦芦完成签到 ,获得积分10
26秒前
26秒前
天才小张发布了新的文献求助10
28秒前
28秒前
Liam发布了新的文献求助10
28秒前
SciGPT应助zhaoman采纳,获得10
30秒前
30秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Внешняя политика КНР: о сущности внешнеполитического курса современного китайского руководства 500
Revolution und Konterrevolution in China [by A. Losowsky] 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3124564
求助须知:如何正确求助?哪些是违规求助? 2774883
关于积分的说明 7724421
捐赠科研通 2430307
什么是DOI,文献DOI怎么找? 1291057
科研通“疑难数据库(出版商)”最低求助积分说明 622052
版权声明 600297