Towards accurate individual tree parameters estimation in dense forest: optimized coarse-to-fine algorithms for registering UAV and terrestrial LiDAR data

激光雷达 均方误差 遥感 胸径 树(集合论) 牙冠(牙科) 森林资源清查 树冠 天蓬 数学 激光扫描 测距 算法 森林经营 林业 统计 地理 激光器 大地测量学 医学 数学分析 物理 牙科 考古 光学
作者
Yuting Zhao,Jungho Im,Zhen Zhen,Yinghui Zhao
出处
期刊:Giscience & Remote Sensing [Taylor & Francis]
卷期号:60 (1) 被引量:10
标识
DOI:10.1080/15481603.2023.2197281
摘要

Accurate quantification of individual tree parameters is vital for precise forest inventory and sustainable forest management. However, in dense forests, terrestrial laser scanning (TLS), which can provide accurate and detailed forest structural measurements, is limited to capturing the complete tree structure due to the lack of upper canopy views, resulting in an underestimation of tree height. Combining TLS with unmanned aerial vehicle laser scanning (ULS) is an effective way to overcome this limitation. Thus, it is vital to register multi-platform Light Detection and Ranging (LiDAR) data for various forestry applications. This study proposed three automated and nearly parameter-free optimized coarse-to-fine algorithms (i.e. FPFH-based optimized ICP (F-OICP), RANSAC-based optimized ICP (R-OICP), and NDT-based optimized ICP (N-OICP)) to accurately register TLS and ULS point data for individual tree crown delineation and parameters (diameter at breast height (DBH) and tree height) estimations in different forest types (i.e. coniferous, mixed broadleaf-coniferous, and broadleaf). Results showed that the proposed optimized algorithms had a good registration performance, with an average RMSE of about 8.3 cm for the transformation error; and obtained stable and high accuracies of individual tree crown delineation (ITCD) (F-score: 0.7), DBH (R2: 0.9, RMSE <1.85 cm), and tree height (R2: 0.8, RMSE <0.37 m) estimates for three forest types. F-OICP performed the best in tree height estimation, reducing the RMSE by 48%, 12%, and 12% compared to iterative closest point (ICP), R-OICP, and N-OICP, respectively. Stand type significantly impacted ITCD and individual tree parameter estimations. The ITCD and DBH estimation accuracy of coniferous forests were marginally higher than those of broadleaf forests (F-score: 0.78 vs. 0.78, DBH RMSE: 1.57 vs. 1.74), while those of mixed broadleaf-coniferous forests were the lowest (F-score: 0.71, DBH RMSE: 2.19). The accuracies of tree height estimates in coniferous forests were the highest (R2: 0.87, RMSE: 0.21 m), followed by mixed broadleaf-coniferous (R2: 0.84, RMSE: 0.37 m) and broadleaf (R2: 0.84, RMSE: 0.44 m) forests. This work developed automated, nearly parameter-free, and effective registration algorithms and recommended F-OICP to be the most appropriate for dense forests (i.e. natural secondary forests). The optimized registration algorithms facilitate the ability for the synergistic use of multi-platform LiDAR and offer appealing and promising approaches for future accurate quantification of individual tree parameters, efficient forest inventories, and sustainable forest management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
emmmmmq完成签到,获得积分10
刚刚
lie列完成签到,获得积分20
刚刚
哭泣的吐司完成签到,获得积分10
刚刚
Owen应助打工人一枚采纳,获得10
1秒前
揚Young完成签到,获得积分10
1秒前
东风徐来完成签到,获得积分10
1秒前
luhui完成签到,获得积分20
1秒前
传统的青关注了科研通微信公众号
1秒前
cc完成签到,获得积分10
2秒前
2秒前
bkagyin应助LongY采纳,获得10
2秒前
2秒前
2秒前
carly发布了新的文献求助10
2秒前
caocao发布了新的文献求助10
2秒前
meimei完成签到,获得积分10
2秒前
晓世完成签到,获得积分10
3秒前
隐形曼青应助科研通管家采纳,获得10
3秒前
3秒前
64658应助科研通管家采纳,获得10
3秒前
王子璇发布了新的文献求助30
3秒前
wanci应助科研通管家采纳,获得10
3秒前
tk完成签到,获得积分10
3秒前
nieqie应助科研通管家采纳,获得10
3秒前
Zx_1993应助科研通管家采纳,获得20
3秒前
领导范儿应助科研通管家采纳,获得10
3秒前
共享精神应助科研通管家采纳,获得10
3秒前
wanci应助科研通管家采纳,获得10
3秒前
Hello应助科研通管家采纳,获得10
3秒前
MikiWu发布了新的文献求助10
3秒前
上官若男应助科研通管家采纳,获得10
3秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
mywaylgh应助科研通管家采纳,获得10
3秒前
浮游应助热心的诗筠采纳,获得10
3秒前
mywaylgh应助科研通管家采纳,获得10
3秒前
3秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
orixero应助科研通管家采纳,获得10
3秒前
wanci应助科研通管家采纳,获得10
3秒前
隐形曼青应助科研通管家采纳,获得10
3秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
A Modern Guide to the Economics of Crime 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5269562
求助须知:如何正确求助?哪些是违规求助? 4427995
关于积分的说明 13781921
捐赠科研通 4305390
什么是DOI,文献DOI怎么找? 2362762
邀请新用户注册赠送积分活动 1358427
关于科研通互助平台的介绍 1321122