Towards accurate individual tree parameters estimation in dense forest: optimized coarse-to-fine algorithms for registering UAV and terrestrial LiDAR data

激光雷达 均方误差 遥感 胸径 树(集合论) 牙冠(牙科) 森林资源清查 树冠 天蓬 数学 激光扫描 测距 算法 森林经营 林业 统计 地理 激光器 大地测量学 医学 数学分析 物理 牙科 考古 光学
作者
Yuting Zhao,Jungho Im,Zhen Zhen,Yinghui Zhao
出处
期刊:Giscience & Remote Sensing [Informa]
卷期号:60 (1) 被引量:10
标识
DOI:10.1080/15481603.2023.2197281
摘要

Accurate quantification of individual tree parameters is vital for precise forest inventory and sustainable forest management. However, in dense forests, terrestrial laser scanning (TLS), which can provide accurate and detailed forest structural measurements, is limited to capturing the complete tree structure due to the lack of upper canopy views, resulting in an underestimation of tree height. Combining TLS with unmanned aerial vehicle laser scanning (ULS) is an effective way to overcome this limitation. Thus, it is vital to register multi-platform Light Detection and Ranging (LiDAR) data for various forestry applications. This study proposed three automated and nearly parameter-free optimized coarse-to-fine algorithms (i.e. FPFH-based optimized ICP (F-OICP), RANSAC-based optimized ICP (R-OICP), and NDT-based optimized ICP (N-OICP)) to accurately register TLS and ULS point data for individual tree crown delineation and parameters (diameter at breast height (DBH) and tree height) estimations in different forest types (i.e. coniferous, mixed broadleaf-coniferous, and broadleaf). Results showed that the proposed optimized algorithms had a good registration performance, with an average RMSE of about 8.3 cm for the transformation error; and obtained stable and high accuracies of individual tree crown delineation (ITCD) (F-score: 0.7), DBH (R2: 0.9, RMSE <1.85 cm), and tree height (R2: 0.8, RMSE <0.37 m) estimates for three forest types. F-OICP performed the best in tree height estimation, reducing the RMSE by 48%, 12%, and 12% compared to iterative closest point (ICP), R-OICP, and N-OICP, respectively. Stand type significantly impacted ITCD and individual tree parameter estimations. The ITCD and DBH estimation accuracy of coniferous forests were marginally higher than those of broadleaf forests (F-score: 0.78 vs. 0.78, DBH RMSE: 1.57 vs. 1.74), while those of mixed broadleaf-coniferous forests were the lowest (F-score: 0.71, DBH RMSE: 2.19). The accuracies of tree height estimates in coniferous forests were the highest (R2: 0.87, RMSE: 0.21 m), followed by mixed broadleaf-coniferous (R2: 0.84, RMSE: 0.37 m) and broadleaf (R2: 0.84, RMSE: 0.44 m) forests. This work developed automated, nearly parameter-free, and effective registration algorithms and recommended F-OICP to be the most appropriate for dense forests (i.e. natural secondary forests). The optimized registration algorithms facilitate the ability for the synergistic use of multi-platform LiDAR and offer appealing and promising approaches for future accurate quantification of individual tree parameters, efficient forest inventories, and sustainable forest management.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SiyuanYang发布了新的文献求助10
1秒前
科研通AI2S应助科研狗采纳,获得10
1秒前
1秒前
2秒前
健壮芷珍完成签到,获得积分10
2秒前
青山载月发布了新的文献求助10
3秒前
丁真先生发布了新的文献求助10
3秒前
3秒前
英俊亦巧发布了新的文献求助20
3秒前
3秒前
摇摆小狗发布了新的文献求助10
4秒前
xiecia发布了新的文献求助10
5秒前
思源应助SSQ采纳,获得10
5秒前
Hear完成签到,获得积分10
5秒前
mimimi完成签到,获得积分10
6秒前
orixero应助YMing采纳,获得10
6秒前
碧蓝飞雪发布了新的文献求助30
6秒前
yznfly应助Vi采纳,获得20
6秒前
7秒前
7秒前
7秒前
冷酷秋柳完成签到,获得积分10
7秒前
开心快乐大王完成签到 ,获得积分10
7秒前
Yihua完成签到,获得积分10
8秒前
打打应助猪猪hero采纳,获得10
8秒前
王璐璐完成签到,获得积分20
8秒前
无花果应助温婉的断天采纳,获得10
8秒前
8秒前
9秒前
吃馒头的包子完成签到,获得积分10
9秒前
南乔发布了新的文献求助10
9秒前
量子星尘发布了新的文献求助10
9秒前
Hear发布了新的文献求助10
9秒前
10秒前
ZeKaWa应助科研笨猪采纳,获得10
10秒前
星辰大海应助小学僧采纳,获得10
10秒前
11秒前
范大大发布了新的文献求助10
11秒前
11秒前
丁真先生完成签到,获得积分10
11秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5619481
求助须知:如何正确求助?哪些是违规求助? 4704241
关于积分的说明 14926617
捐赠科研通 4760056
什么是DOI,文献DOI怎么找? 2550615
邀请新用户注册赠送积分活动 1513368
关于科研通互助平台的介绍 1474450