Towards accurate individual tree parameters estimation in dense forest: optimized coarse-to-fine algorithms for registering UAV and terrestrial LiDAR data

激光雷达 均方误差 遥感 胸径 树(集合论) 牙冠(牙科) 森林资源清查 树冠 天蓬 数学 激光扫描 测距 算法 森林经营 林业 统计 地理 激光器 大地测量学 医学 数学分析 物理 牙科 考古 光学
作者
Yuting Zhao,Jungho Im,Zhen Zhen,Yinghui Zhao
出处
期刊:Giscience & Remote Sensing [Informa]
卷期号:60 (1) 被引量:10
标识
DOI:10.1080/15481603.2023.2197281
摘要

Accurate quantification of individual tree parameters is vital for precise forest inventory and sustainable forest management. However, in dense forests, terrestrial laser scanning (TLS), which can provide accurate and detailed forest structural measurements, is limited to capturing the complete tree structure due to the lack of upper canopy views, resulting in an underestimation of tree height. Combining TLS with unmanned aerial vehicle laser scanning (ULS) is an effective way to overcome this limitation. Thus, it is vital to register multi-platform Light Detection and Ranging (LiDAR) data for various forestry applications. This study proposed three automated and nearly parameter-free optimized coarse-to-fine algorithms (i.e. FPFH-based optimized ICP (F-OICP), RANSAC-based optimized ICP (R-OICP), and NDT-based optimized ICP (N-OICP)) to accurately register TLS and ULS point data for individual tree crown delineation and parameters (diameter at breast height (DBH) and tree height) estimations in different forest types (i.e. coniferous, mixed broadleaf-coniferous, and broadleaf). Results showed that the proposed optimized algorithms had a good registration performance, with an average RMSE of about 8.3 cm for the transformation error; and obtained stable and high accuracies of individual tree crown delineation (ITCD) (F-score: 0.7), DBH (R2: 0.9, RMSE <1.85 cm), and tree height (R2: 0.8, RMSE <0.37 m) estimates for three forest types. F-OICP performed the best in tree height estimation, reducing the RMSE by 48%, 12%, and 12% compared to iterative closest point (ICP), R-OICP, and N-OICP, respectively. Stand type significantly impacted ITCD and individual tree parameter estimations. The ITCD and DBH estimation accuracy of coniferous forests were marginally higher than those of broadleaf forests (F-score: 0.78 vs. 0.78, DBH RMSE: 1.57 vs. 1.74), while those of mixed broadleaf-coniferous forests were the lowest (F-score: 0.71, DBH RMSE: 2.19). The accuracies of tree height estimates in coniferous forests were the highest (R2: 0.87, RMSE: 0.21 m), followed by mixed broadleaf-coniferous (R2: 0.84, RMSE: 0.37 m) and broadleaf (R2: 0.84, RMSE: 0.44 m) forests. This work developed automated, nearly parameter-free, and effective registration algorithms and recommended F-OICP to be the most appropriate for dense forests (i.e. natural secondary forests). The optimized registration algorithms facilitate the ability for the synergistic use of multi-platform LiDAR and offer appealing and promising approaches for future accurate quantification of individual tree parameters, efficient forest inventories, and sustainable forest management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
小黄应助学术蠕虫采纳,获得10
1秒前
1秒前
Orange应助自觉的小蝴蝶采纳,获得10
2秒前
2秒前
哲999发布了新的文献求助10
2秒前
xiaohu完成签到,获得积分10
3秒前
文艺的毛巾完成签到,获得积分20
3秒前
3秒前
勤快浣熊完成签到 ,获得积分10
3秒前
听风完成签到 ,获得积分10
3秒前
糖果苏扬完成签到 ,获得积分10
4秒前
jasmineee完成签到,获得积分10
4秒前
lurenjia009发布了新的文献求助10
4秒前
Orange应助小橙子采纳,获得10
4秒前
iiing完成签到 ,获得积分10
5秒前
想跟这个世界讲个道理完成签到,获得积分10
5秒前
5秒前
5秒前
Eva发布了新的文献求助10
6秒前
张有志应助本杰明采纳,获得30
6秒前
Dandelion完成签到,获得积分10
6秒前
完美世界应助葛辉辉采纳,获得10
7秒前
龙泉完成签到 ,获得积分10
7秒前
Khr1stINK发布了新的文献求助20
7秒前
美女发布了新的文献求助10
7秒前
汉堡包应助烫嘴普通话采纳,获得10
7秒前
长颈鹿完成签到,获得积分10
9秒前
Koi完成签到,获得积分10
9秒前
打卤完成签到,获得积分10
9秒前
CodeCraft应助Intro采纳,获得10
10秒前
SciGPT应助cat采纳,获得10
10秒前
Minkslion发布了新的文献求助10
10秒前
11秒前
酷波er应助细腻的麦片采纳,获得10
12秒前
lurenjia009完成签到,获得积分10
13秒前
13秒前
科研通AI5应助huangyi采纳,获得10
14秒前
yxy完成签到,获得积分10
14秒前
Orange应助yam001采纳,获得30
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762