清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Towards accurate individual tree parameters estimation in dense forest: optimized coarse-to-fine algorithms for registering UAV and terrestrial LiDAR data

激光雷达 均方误差 遥感 胸径 树(集合论) 牙冠(牙科) 森林资源清查 树冠 天蓬 数学 激光扫描 测距 算法 森林经营 林业 统计 地理 激光器 大地测量学 医学 数学分析 物理 牙科 考古 光学
作者
Yuting Zhao,Jungho Im,Zhen Zhen,Yinghui Zhao
出处
期刊:Giscience & Remote Sensing [Informa]
卷期号:60 (1) 被引量:10
标识
DOI:10.1080/15481603.2023.2197281
摘要

Accurate quantification of individual tree parameters is vital for precise forest inventory and sustainable forest management. However, in dense forests, terrestrial laser scanning (TLS), which can provide accurate and detailed forest structural measurements, is limited to capturing the complete tree structure due to the lack of upper canopy views, resulting in an underestimation of tree height. Combining TLS with unmanned aerial vehicle laser scanning (ULS) is an effective way to overcome this limitation. Thus, it is vital to register multi-platform Light Detection and Ranging (LiDAR) data for various forestry applications. This study proposed three automated and nearly parameter-free optimized coarse-to-fine algorithms (i.e. FPFH-based optimized ICP (F-OICP), RANSAC-based optimized ICP (R-OICP), and NDT-based optimized ICP (N-OICP)) to accurately register TLS and ULS point data for individual tree crown delineation and parameters (diameter at breast height (DBH) and tree height) estimations in different forest types (i.e. coniferous, mixed broadleaf-coniferous, and broadleaf). Results showed that the proposed optimized algorithms had a good registration performance, with an average RMSE of about 8.3 cm for the transformation error; and obtained stable and high accuracies of individual tree crown delineation (ITCD) (F-score: 0.7), DBH (R2: 0.9, RMSE <1.85 cm), and tree height (R2: 0.8, RMSE <0.37 m) estimates for three forest types. F-OICP performed the best in tree height estimation, reducing the RMSE by 48%, 12%, and 12% compared to iterative closest point (ICP), R-OICP, and N-OICP, respectively. Stand type significantly impacted ITCD and individual tree parameter estimations. The ITCD and DBH estimation accuracy of coniferous forests were marginally higher than those of broadleaf forests (F-score: 0.78 vs. 0.78, DBH RMSE: 1.57 vs. 1.74), while those of mixed broadleaf-coniferous forests were the lowest (F-score: 0.71, DBH RMSE: 2.19). The accuracies of tree height estimates in coniferous forests were the highest (R2: 0.87, RMSE: 0.21 m), followed by mixed broadleaf-coniferous (R2: 0.84, RMSE: 0.37 m) and broadleaf (R2: 0.84, RMSE: 0.44 m) forests. This work developed automated, nearly parameter-free, and effective registration algorithms and recommended F-OICP to be the most appropriate for dense forests (i.e. natural secondary forests). The optimized registration algorithms facilitate the ability for the synergistic use of multi-platform LiDAR and offer appealing and promising approaches for future accurate quantification of individual tree parameters, efficient forest inventories, and sustainable forest management.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Juvianne发布了新的文献求助30
16秒前
花花完成签到 ,获得积分10
17秒前
王饱饱完成签到 ,获得积分10
18秒前
夜话风陵杜完成签到 ,获得积分0
18秒前
26秒前
海阔天空完成签到 ,获得积分10
28秒前
量子星尘发布了新的文献求助10
29秒前
Rebeccaiscute完成签到 ,获得积分10
34秒前
Xzx1995完成签到 ,获得积分10
40秒前
外向的妍完成签到,获得积分10
42秒前
YifanWang应助科研通管家采纳,获得30
45秒前
YifanWang应助科研通管家采纳,获得30
45秒前
punyunyung发布了新的文献求助10
54秒前
55秒前
jiyuan完成签到,获得积分10
58秒前
Joy发布了新的文献求助10
1分钟前
佳期如梦完成签到 ,获得积分10
1分钟前
先锋老刘001完成签到,获得积分10
1分钟前
潇洒的语蝶完成签到 ,获得积分10
1分钟前
keke发布了新的文献求助10
1分钟前
1分钟前
胖小羊完成签到 ,获得积分10
1分钟前
数乱了梨花完成签到 ,获得积分0
1分钟前
毛毛弟完成签到 ,获得积分10
1分钟前
文艺水风完成签到 ,获得积分10
1分钟前
1分钟前
andre20完成签到 ,获得积分10
1分钟前
萝卜Eating发布了新的文献求助30
1分钟前
神经蛙完成签到 ,获得积分10
1分钟前
punyunyung完成签到,获得积分10
1分钟前
spc68应助黎明先生采纳,获得10
1分钟前
AM发布了新的文献求助10
1分钟前
1分钟前
淡如菊发布了新的文献求助10
1分钟前
Akim应助AM采纳,获得10
1分钟前
丢星完成签到 ,获得积分10
2分钟前
helen李完成签到 ,获得积分10
2分钟前
朴素海亦完成签到 ,获得积分10
2分钟前
淡如菊完成签到,获得积分10
2分钟前
似乎一场梦完成签到,获得积分10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Terminologia Embryologica 500
Process Plant Design for Chemical Engineers 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5612035
求助须知:如何正确求助?哪些是违规求助? 4696186
关于积分的说明 14890583
捐赠科研通 4731071
什么是DOI,文献DOI怎么找? 2546115
邀请新用户注册赠送积分活动 1510425
关于科研通互助平台的介绍 1473310