Interpretable machine learning for selection of site-specific soil constitutive models and consolidation settlement analysis

可解释性 合并(业务) 结算(财务) 机器学习 人工智能 本构方程 计算机科学 排名(信息检索) 数据挖掘 岩土工程 有限元法 工程类 结构工程 会计 万维网 业务 付款
作者
Hua-Ming Tian,Yu Wang
出处
期刊:Computers and Geotechnics [Elsevier]
卷期号:171: 106396-106396
标识
DOI:10.1016/j.compgeo.2024.106396
摘要

Machine learning (ML) has achieved great breakthroughs in many fields, such as computer vision and speech recognition, and it also gains an increasing attention in geotechnical engineering. However, it is often criticized for a lack of interpretability. This study proposes an interpretable sparse dictionary learning (ISDL) approach for selection of suitable soil constitutive models (SCMs) and geotechnical consolidation analysis in a specific site. ISDL is inherently interpretable since it expresses prediction of geotechnical responses (e.g., consolidation settlement) as a weighted summation of many elementary datasets (i.e., dictionary atoms in ISDL). The dictionary atoms are constructed using numerical analyses (e.g., finite element model) with different candidate SCMs and parameters. Interpretability of ISDL is improved by a small number of non-trivial atoms (or SCMs) selected for model prediction using site-specific monitoring data and further enhanced by contribution ranking of the selected SCMs using a game theory-based approach. The proposed method is illustrated using a real reclamation project in Hong Kong, and it is shown to effectively select the most suitable constitutive models for the given site, quantify contributions of the selected models, and significantly improve settlement predictions with rigorously quantified prediction uncertainty, particularly at locations without monitoring or future time steps.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1117应助翼静采纳,获得10
刚刚
写作业写作业关注了科研通微信公众号
1秒前
1秒前
2秒前
2秒前
科研通AI2S应助发nature采纳,获得10
2秒前
3秒前
3秒前
5秒前
Hustlers完成签到,获得积分10
5秒前
zz1234发布了新的文献求助10
5秒前
5秒前
路冰发布了新的文献求助10
6秒前
英姑应助矮小的睫毛采纳,获得10
6秒前
Lisa_Su_8055发布了新的文献求助10
7秒前
却无完成签到,获得积分10
7秒前
elsalili发布了新的文献求助10
7秒前
8秒前
Faint_Dream发布了新的文献求助10
9秒前
10秒前
Jasper应助孔曼卉采纳,获得10
10秒前
黑猫紧张发布了新的文献求助10
10秒前
杳鸢应助现代小笼包采纳,获得10
11秒前
Xuefei发布了新的文献求助10
12秒前
文静觅翠发布了新的文献求助10
13秒前
SciGPT应助醉熏的天薇采纳,获得10
13秒前
14秒前
14秒前
15秒前
15秒前
隐形曼青应助adfadf采纳,获得10
16秒前
科研通AI2S应助故里采纳,获得10
17秒前
Vincent发布了新的文献求助10
17秒前
搜集达人应助kryie采纳,获得10
17秒前
Nicheng发布了新的文献求助10
18秒前
18秒前
ding应助Foremelon采纳,获得10
19秒前
19秒前
笨笨金毛发布了新的文献求助10
20秒前
non关闭了non文献求助
21秒前
高分求助中
Earth System Geophysics 1000
Studies on the inheritance of some characters in rice Oryza sativa L 600
Medicina di laboratorio. Logica e patologia clinica 600
Mathematics and Finite Element Discretizations of Incompressible Navier—Stokes Flows 500
mTOR signalling in RPGR-associated Retinitis Pigmentosa 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Aspects of Babylonian celestial divination: the lunar eclipse tablets of Enūma Anu Enlil 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3206581
求助须知:如何正确求助?哪些是违规求助? 2856095
关于积分的说明 8102312
捐赠科研通 2521097
什么是DOI,文献DOI怎么找? 1354154
科研通“疑难数据库(出版商)”最低求助积分说明 641973
邀请新用户注册赠送积分活动 613167