Multi-modal global- and local- feature interaction with attention-based mechanism for diagnosis of Alzheimer’s disease

机制(生物学) 特征(语言学) 情态动词 计算机科学 疾病 人工智能 医学 语言学 物理 化学 病理 哲学 量子力学 高分子化学
作者
Nana Jia,Tong Jia,Zhao Li,Bowen Ma,Zhizhen Zhu
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:95: 106404-106404 被引量:2
标识
DOI:10.1016/j.bspc.2024.106404
摘要

Alzheimer's disease is a complex neurodegenerative disease. Subjects with Mild Cognitive Impairment will progress to Alzheimer's disease, thus how to effectively diagnose Alzheimer's disease or Mild Cognitive Impairment using the clinical tabular data and Magnetic Resonance Images of the brain together has been a major concern of researches. Deep multi-modal learning-based methods can improve Alzheimer's disease diagnostic accuracy compared to the single modality-based methods. However, most existing multi-modal fusion methods only focus on learning global features fusion from image and clinical tabular data by concatenation, lacking the ability to jointly analyze and integrate global–local information of image with clinical tabular data. To address these limitations, this paper explored a novel Multi-Modal Global–Local Fusion method to perform multi-modal Alzheimer's disease classification through 3D Magnetic Resonance Images and clinical tabular data. Specifically, we adopt a global module that uses concatenation to fuse features to learn the global information. Moreover, we design an attention-based local module which encourages clinical tabular features to guide the learning of local 3D Magnetic Resonance Images information, thus, enhancing the power of features fusion from each modality. Our method considers both global and local information of the two modalities for multi-modal fusion. Experiment results show that our method in this paper is highly effective in combining 3D Magnetic Resonance Images and clinical tabular data for Alzheimer's disease classification with accuracy of 86.34% and 86.77% in ADNI and OASIS-1 datasets respectively, which outperforms the current state-of-the-art methods. Detailed ablation experiments are conducted to highlight the contribution of various components. code is available at: https://github.com/nananana0701/MMGLF.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
烟花应助123号采纳,获得10
刚刚
超帅的遥完成签到,获得积分10
刚刚
Zxc完成签到,获得积分10
1秒前
lbt完成签到 ,获得积分10
2秒前
yao完成签到 ,获得积分10
3秒前
3秒前
5秒前
6秒前
6秒前
doudou完成签到 ,获得积分10
6秒前
BCS完成签到,获得积分10
6秒前
领导范儿应助KYN采纳,获得10
6秒前
7秒前
独特的莫言完成签到,获得积分10
9秒前
lin发布了新的文献求助10
10秒前
aero完成签到 ,获得积分10
12秒前
123号完成签到,获得积分10
14秒前
充电宝应助TT采纳,获得10
16秒前
17秒前
17秒前
英姑应助荒野星辰采纳,获得10
19秒前
19秒前
YHY完成签到,获得积分10
21秒前
科研通AI5应助魏伯安采纳,获得10
21秒前
caoyy发布了新的文献求助10
21秒前
22秒前
23秒前
张喻235532完成签到,获得积分10
24秒前
失眠虔纹发布了新的文献求助10
25秒前
香蕉觅云应助糊涂的小伙采纳,获得10
25秒前
25秒前
sutharsons应助科研通管家采纳,获得200
27秒前
打打应助科研通管家采纳,获得10
27秒前
axin应助科研通管家采纳,获得10
27秒前
丘比特应助科研通管家采纳,获得10
27秒前
小蘑菇应助科研通管家采纳,获得10
27秒前
上官若男应助科研通管家采纳,获得10
27秒前
无花果应助科研通管家采纳,获得10
27秒前
27秒前
李健应助科研通管家采纳,获得10
27秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527998
求助须知:如何正确求助?哪些是违规求助? 3108225
关于积分的说明 9288086
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540195
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849