Multi-modal global- and local- feature interaction with attention-based mechanism for diagnosis of Alzheimer’s disease

机制(生物学) 特征(语言学) 情态动词 计算机科学 疾病 人工智能 医学 语言学 物理 化学 病理 哲学 量子力学 高分子化学
作者
Nana Jia,Tong Jia,Zhao Li,Bowen Ma,Zhizhen Zhu
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:95: 106404-106404 被引量:2
标识
DOI:10.1016/j.bspc.2024.106404
摘要

Alzheimer's disease is a complex neurodegenerative disease. Subjects with Mild Cognitive Impairment will progress to Alzheimer's disease, thus how to effectively diagnose Alzheimer's disease or Mild Cognitive Impairment using the clinical tabular data and Magnetic Resonance Images of the brain together has been a major concern of researches. Deep multi-modal learning-based methods can improve Alzheimer's disease diagnostic accuracy compared to the single modality-based methods. However, most existing multi-modal fusion methods only focus on learning global features fusion from image and clinical tabular data by concatenation, lacking the ability to jointly analyze and integrate global–local information of image with clinical tabular data. To address these limitations, this paper explored a novel Multi-Modal Global–Local Fusion method to perform multi-modal Alzheimer's disease classification through 3D Magnetic Resonance Images and clinical tabular data. Specifically, we adopt a global module that uses concatenation to fuse features to learn the global information. Moreover, we design an attention-based local module which encourages clinical tabular features to guide the learning of local 3D Magnetic Resonance Images information, thus, enhancing the power of features fusion from each modality. Our method considers both global and local information of the two modalities for multi-modal fusion. Experiment results show that our method in this paper is highly effective in combining 3D Magnetic Resonance Images and clinical tabular data for Alzheimer's disease classification with accuracy of 86.34% and 86.77% in ADNI and OASIS-1 datasets respectively, which outperforms the current state-of-the-art methods. Detailed ablation experiments are conducted to highlight the contribution of various components. code is available at: https://github.com/nananana0701/MMGLF.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
猪爸爸发布了新的文献求助100
1秒前
1秒前
2秒前
2秒前
3秒前
3秒前
科研通AI2S应助yeye采纳,获得10
4秒前
4秒前
4秒前
aaa完成签到,获得积分10
4秒前
5秒前
呼噜噜发布了新的文献求助20
5秒前
淡定季节发布了新的文献求助10
5秒前
Cd发布了新的文献求助10
6秒前
6秒前
jgpiao发布了新的文献求助10
6秒前
黎莉莉完成签到,获得积分10
6秒前
沐槿完成签到,获得积分20
6秒前
蓝桥兰灯发布了新的文献求助10
7秒前
8秒前
所所应助seven采纳,获得10
8秒前
g_f完成签到 ,获得积分10
9秒前
9秒前
顺利的觅云完成签到,获得积分10
9秒前
学术垃圾关注了科研通微信公众号
9秒前
aaa发布了新的文献求助30
9秒前
迷路鸽子发布了新的文献求助10
9秒前
Squidward完成签到,获得积分10
9秒前
9秒前
顺心迎梦发布了新的文献求助10
10秒前
无花果应助朴素涵雁采纳,获得10
10秒前
10秒前
11秒前
kaka091发布了新的文献求助10
11秒前
七月完成签到,获得积分10
11秒前
mengmeng完成签到,获得积分10
11秒前
Squidward发布了新的文献求助10
12秒前
12秒前
JamesPei应助蔡秋景采纳,获得10
12秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3135387
求助须知:如何正确求助?哪些是违规求助? 2786384
关于积分的说明 7777028
捐赠科研通 2442291
什么是DOI,文献DOI怎么找? 1298501
科研通“疑难数据库(出版商)”最低求助积分说明 625124
版权声明 600847