能见度
危害
计算机科学
危险模型
业务
计算机安全
地理
气象学
精算学
化学
有机化学
作者
Wei-Chi Huang,Lin-Han Fan,Zi-Jian Han,Ya-Feng Niu
标识
DOI:10.1016/j.aap.2024.107687
摘要
Autonomous driving technology has the potential to significantly reduce the number of traffic accidents. However, before achieving full automation, drivers still need to take control of the vehicle in complex and diverse scenarios that the autonomous driving system cannot handle. Therefore, appropriate takeover request (TOR) designs are necessary to enhance takeover performance and driving safety. This study focuses on takeover tasks in hazard scenarios with varied hazard visibility, which can be categorized as overt hazards and covert hazards. Through ergonomic experiments, the impact of TOR interface visual information, including takeover warning, hazard direction, and time to collision, on takeover performance is investigated, and specific analyses are conducted using eye-tracking data. The following conclusions are drawn from the experiments: (1) The visibility of hazards significantly affects takeover performance. (2) Providing more TOR visual information in hazards with different visibility has varying effects on drivers' visual attention allocation but can improve takeover performance. (3) More TOR visual information helps reduce takeover workload and increase human-machine trust. Based on these findings, this paper proposes the following TOR visual interface design strategies: (1) In overt hazard scenarios, only takeover warning is necessary, as additional visual information may distract drivers' attention. (2) In covert hazard scenarios, the TOR visual interface should better assist drivers in understanding the current hazard situation by providing information on hazard direction and time to collision to enhance takeover performance.
科研通智能强力驱动
Strongly Powered by AbleSci AI