串联
钙钛矿(结构)
材料科学
带隙
光电子学
锡
纳米技术
铅(地质)
化学工程
冶金
地质学
地貌学
复合材料
工程类
标识
DOI:10.1002/adma.202314341
摘要
Abstract Organic–inorganic metal‐halide perovskites have received great attention for photovoltaic (PV) applications owing to their superior optoelectronic properties and the unprecedented performance development. For single‐junction PV devices, although lead (Pb)‐based perovskite solar cells have achieved 26.1% efficiency, the mixed tin‐lead (Sn‐Pb) perovskites offer more ideal bandgap tuning capability to enable an even higher performance. The Sn‐Pb perovskite (with a bandgap tuned to ≈1.2 eV) is also attractive as the bottom subcell for a tandem configuration to further surpass the Shockley–Queisser radiative limit for the single‐junction devices. The performance of the all‐perovskite tandem solar cells has gained rapid development and achieved a certified efficiency up to 29.1%. In this article, the properties and recent development of state‐of‐the‐art mixed Sn‐Pb perovskites and their application in single‐junction and all‐perovskite tandem solar cells are reviewed. Recent advances in various approaches covering additives, solvents, interfaces, and perovskite growth are highlighted. The authors also provide the perspective and outlook on the challenges and strategies for further development of mixed Sn‐Pb perovskites in both efficiency and stability for PV applications.
科研通智能强力驱动
Strongly Powered by AbleSci AI