A facile single-cell patterning strategy based on harbor-like microwell microfluidics

微流控 纳米技术 材料科学
作者
Yingnan Sun,Yongshu Liu,Dalin Sun,Kexin Liu,Yuyan Li,Yumin Liu,Shusheng Zhang
出处
期刊:Biomedical Materials [IOP Publishing]
标识
DOI:10.1088/1748-605x/ad4e83
摘要

Single-cell analysis is an effective method for conducting comprehensive heterogeneity studies ranging from cell phenotype to gene expression. The ability to arrange different cells in a predetermined pattern at single-cell resolution has a wide range of applications in cell-based analysis and plays an important role in facilitating interdisciplinary research by researchers in various fields. Most existing microfluidic microwell chips is a simple and straightforward method, which typically use small-sized microwells to accommodate single cells. However, this method imposes certain limitations on cells of various sizes, and the single-cell capture efficiency is relatively low without the assistance of external forces. Moreover, the microwells limit the spatiotemporal resolution of reagent replacement, as well as cell-to-cell communication. In this study, we propose a new strategy to prepare a single-cell array on a planar microchannel based on microfluidic flip microwells chip platform with large apertures (50 μm), shallow channels (50 μm), and deep microwells (50 μm). The combination of three configuration characteristics contributes to multi-cell trapping and a single-cell array within microwells, while the subsequent chip flipping accomplishes the transfer of the single-cell array to the opposite planar microchannel for cells adherence and growth. Further assisted by protein coating of bovine serum albumin and fibronectin on different layers, the single-cell capture efficiency in microwells is achieved at 92.1 ± 1%, while ultimately 85 ± 3.4% on planar microchannel. To verify the microfluidic flip microwells chip platform, the real-time and heterogeneous study of calcium release and apoptosis behaviors of single cells is carried out. To our knowledge, this is the first time that high-efficiency single-cell acquisition has been accomplished using a circular-well chip design that combines shallow channel, large aperture and deep microwell together. The chip is effective in avoiding the shearing force of high flow rates on cells, and the large apertures better allows cells to sedimentation. Therefore, this strategy owns the advantages of easy preparation and user-friendliness, which is especially valuable for researchers from different fields.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
优秀笑柳完成签到,获得积分10
3秒前
丘比特应助trussie采纳,获得10
3秒前
Cherish完成签到,获得积分10
4秒前
111完成签到,获得积分10
4秒前
量子星尘发布了新的文献求助10
4秒前
Owen应助马上飞上宇宙采纳,获得10
5秒前
善学以致用应助jc采纳,获得10
5秒前
7秒前
划分完成签到,获得积分10
7秒前
111发布了新的文献求助10
8秒前
fanfan完成签到,获得积分10
9秒前
周久完成签到 ,获得积分10
9秒前
ada发布了新的文献求助10
10秒前
小蘑菇应助小卢卢快闭嘴采纳,获得10
11秒前
彭tiantian完成签到 ,获得积分10
11秒前
13秒前
lucy发布了新的文献求助10
13秒前
15秒前
爱放屁的马邦德完成签到,获得积分10
15秒前
simdows发布了新的文献求助10
16秒前
Rain完成签到,获得积分10
17秒前
18秒前
lzcccccc完成签到,获得积分10
19秒前
ljc完成签到 ,获得积分10
20秒前
21秒前
科研通AI6应助纸箱采纳,获得10
22秒前
22秒前
original完成签到,获得积分10
23秒前
一向年光无限身完成签到,获得积分10
23秒前
浮游应助大李不说话采纳,获得10
25秒前
26秒前
日出完成签到,获得积分10
27秒前
Twonej举报lilianan求助涉嫌违规
28秒前
28秒前
七星茶发布了新的文献求助10
29秒前
无花果应助Wells采纳,获得10
31秒前
上官若男应助Wells采纳,获得10
31秒前
乐乐应助Wells采纳,获得10
31秒前
赘婿应助Wells采纳,获得10
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5638000
求助须知:如何正确求助?哪些是违规求助? 4744481
关于积分的说明 15000910
捐赠科研通 4796182
什么是DOI,文献DOI怎么找? 2562369
邀请新用户注册赠送积分活动 1521868
关于科研通互助平台的介绍 1481741