FusionNet:Detection of Foreign Objects in Transmission Lines During Inclement Weather

块(置换群论) 电力传输 信息融合 目标检测 计算机科学 直线(几何图形) 人工神经网络 深度学习 人工智能 工程类 电气工程 模式识别(心理学) 数学 几何学
作者
Chao Ji,Xia Jia,Xinbo Huang,Shijian Zhou,G.Y. Chen,Yongcan Zhu
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:73: 1-18
标识
DOI:10.1109/tim.2024.3403173
摘要

To address the low accuracy and moderate speed of traditional foreign object detection in transmission line image inspection, the FusionNet is proposed based foreign object detection algorithm in severe weather. First, the FB module(Fusion Block) is proposed in this algorithm, combined with the CA attention(Coordinate Attention) mechanism and the Hardswish activation function, so that the network can increase the learning of the location information based on the attention on the overall classification information, and reduce the network parameters. Then, based on FasterNet, the FSB module (Fusion Speed Block)is proposed to extract the space more efficiently. In addition, the FMB module(Fusion Memory Block) is proposed, which makes full use of the accumulated information in the past to extract more accurate and abundant features. Finally, the utilization of EfficiCIoU as a loss function serves to expedite model convergence and enhance detection precision. Experimental results show that on the dataset in this paper, the improved algorithm mAP@0.5 reaches 98.27%, the model parameters are reduced by 130.42M compared with the Faster-RCNN model, and the accuracy is improved by 19.62% and 4.63% compared with SSD and YOLOv7 models, respectively. The performance on the China Power Line Insulator Dataset (CPLID) is also excellent, reaching 99.17% mAP@0.5, an improvement of 1.85% compared with the baseline model. Compared to the existing models, the FusionNet model is smaller in size and has higher detection accuracy. It can accurately detect targets in inclement weather and perform the task of foreign body detection in transmission lines.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
脑洞疼应助fox采纳,获得10
2秒前
科研小蔡发布了新的文献求助10
6秒前
10秒前
思源应助wait采纳,获得10
10秒前
范慧晨完成签到,获得积分10
10秒前
魏头头完成签到 ,获得积分10
10秒前
欢喜的鹏涛完成签到,获得积分10
10秒前
11秒前
沅沅完成签到 ,获得积分10
13秒前
张来发布了新的文献求助10
15秒前
fox发布了新的文献求助10
15秒前
16秒前
19秒前
张振宇发布了新的文献求助10
20秒前
bkagyin应助科研小蔡采纳,获得10
20秒前
黑米粥发布了新的文献求助10
23秒前
24秒前
Lucky完成签到 ,获得积分10
25秒前
25秒前
28秒前
鲤黎黎发布了新的文献求助10
31秒前
绵绵球发布了新的文献求助10
32秒前
32秒前
33秒前
33秒前
36秒前
黑米粥发布了新的文献求助10
36秒前
左白易发布了新的文献求助10
37秒前
小情绪发布了新的文献求助10
37秒前
38秒前
我是老大应助he采纳,获得10
38秒前
Timber完成签到,获得积分10
42秒前
44秒前
46秒前
黑米粥发布了新的文献求助10
50秒前
50秒前
CTCTCT6完成签到,获得积分10
50秒前
51秒前
weizhao发布了新的文献求助10
52秒前
CTCTCT6发布了新的文献求助10
54秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5560463
求助须知:如何正确求助?哪些是违规求助? 4645717
关于积分的说明 14675923
捐赠科研通 4586840
什么是DOI,文献DOI怎么找? 2516564
邀请新用户注册赠送积分活动 1490169
关于科研通互助平台的介绍 1461037