FusionNet:Detection of Foreign Objects in Transmission Lines During Inclement Weather

块(置换群论) 电力传输 信息融合 目标检测 计算机科学 直线(几何图形) 人工神经网络 深度学习 人工智能 工程类 电气工程 模式识别(心理学) 数学 几何学
作者
Chao Ji,Xia Jia,Xinbo Huang,Shijian Zhou,G.Y. Chen,Yongcan Zhu
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:73: 1-18
标识
DOI:10.1109/tim.2024.3403173
摘要

To address the low accuracy and moderate speed of traditional foreign object detection in transmission line image inspection, the FusionNet is proposed based foreign object detection algorithm in severe weather. First, the FB module(Fusion Block) is proposed in this algorithm, combined with the CA attention(Coordinate Attention) mechanism and the Hardswish activation function, so that the network can increase the learning of the location information based on the attention on the overall classification information, and reduce the network parameters. Then, based on FasterNet, the FSB module (Fusion Speed Block)is proposed to extract the space more efficiently. In addition, the FMB module(Fusion Memory Block) is proposed, which makes full use of the accumulated information in the past to extract more accurate and abundant features. Finally, the utilization of EfficiCIoU as a loss function serves to expedite model convergence and enhance detection precision. Experimental results show that on the dataset in this paper, the improved algorithm mAP@0.5 reaches 98.27%, the model parameters are reduced by 130.42M compared with the Faster-RCNN model, and the accuracy is improved by 19.62% and 4.63% compared with SSD and YOLOv7 models, respectively. The performance on the China Power Line Insulator Dataset (CPLID) is also excellent, reaching 99.17% mAP@0.5, an improvement of 1.85% compared with the baseline model. Compared to the existing models, the FusionNet model is smaller in size and has higher detection accuracy. It can accurately detect targets in inclement weather and perform the task of foreign body detection in transmission lines.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
shiqiang mu应助lcxll采纳,获得10
刚刚
刚刚
科研通AI2S应助鱼咬羊采纳,获得10
1秒前
2秒前
和谐板栗完成签到 ,获得积分10
4秒前
怡然灵凡完成签到 ,获得积分10
5秒前
冷艳中蓝发布了新的文献求助10
5秒前
梧桐的灯完成签到,获得积分10
9秒前
桐桐应助Yportne采纳,获得10
11秒前
龙泉居士发布了新的文献求助30
12秒前
Lsy完成签到,获得积分10
17秒前
不会起名完成签到,获得积分10
17秒前
18秒前
能干夏旋完成签到,获得积分10
19秒前
斯文败类应助Bruce Lin采纳,获得10
19秒前
Jessie完成签到 ,获得积分20
19秒前
vivre223发布了新的文献求助10
22秒前
Lucas应助LiBo采纳,获得10
22秒前
liao完成签到,获得积分10
24秒前
科研通AI2S应助渡尘采纳,获得10
25秒前
鲜艳的远航完成签到,获得积分10
27秒前
28秒前
王半书完成签到 ,获得积分10
28秒前
30秒前
搜集达人应助八森木采纳,获得10
31秒前
skip完成签到,获得积分10
31秒前
lcxll完成签到 ,获得积分10
32秒前
顾矜应助热心翠曼采纳,获得10
33秒前
33秒前
呆小蓉完成签到,获得积分10
33秒前
笑一笑发布了新的文献求助10
33秒前
怡米李完成签到,获得积分10
33秒前
star完成签到,获得积分10
34秒前
华仔应助ycliang采纳,获得10
34秒前
xiao完成签到 ,获得积分20
35秒前
杨光发布了新的文献求助10
35秒前
36秒前
大个应助朴素海亦采纳,获得10
37秒前
传奇3应助ffff采纳,获得10
37秒前
38秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
How Maoism Was Made: Reconstructing China, 1949-1965 800
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3309599
求助须知:如何正确求助?哪些是违规求助? 2942884
关于积分的说明 8511456
捐赠科研通 2617981
什么是DOI,文献DOI怎么找? 1430741
科研通“疑难数据库(出版商)”最低求助积分说明 664212
邀请新用户注册赠送积分活动 649424