NeighborNet: Learning Intra- and Inter-Image Pixel Neighbor Representation for Breast Lesion Segmentation

计算机科学 人工智能 分割 像素 模式识别(心理学) 特征学习 特征(语言学) k-最近邻算法 代表(政治) 图像分割 计算机视觉 政治 政治学 法学 哲学 语言学
作者
Weiwei Cao,Jianfeng Guo,Xiaohui You,Yuxin Liu,Lei Li,Wenju Cui,Yuzhu Cao,Xinjian Chen,Jian Zheng
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:28 (8): 4761-4771
标识
DOI:10.1109/jbhi.2024.3400802
摘要

Breast lesion segmentation from ultrasound images is essential in computer-aided breast cancer diagnosis. To alleviate the problems of blurry lesion boundaries and irregular morphologies, common practices combine CNN and attention to integrate global and local information. However, previous methods use two independent modules to extract global and local features separately, such feature-wise inflexible integration ignores the semantic gap between them, resulting in representation redundancy/insufficiency and undesirable restrictions in clinic practices. Moreover, medical images are highly similar to each other due to the imaging methods and human tissues, but the captured global information by transformer-based methods in the medical domain is limited within images, the semantic relations and common knowledge across images are largely ignored. To alleviate the above problems, in the neighbor view, this paper develops a pixel neighbor representation learning method (NeighborNet) to flexibly integrate global and local context within and across images for lesion morphology and boundary modeling. Concretely, we design two neighbor layers to investigate two properties (i.e., number and distribution) of neighbors. The neighbor number for each pixel is not fixed but determined by itself. The neighbor distribution is extended from one image to all images in the datasets. With the two properties, for each pixel at each feature level, the proposed NeighborNet can evolve into the transformer or degenerate into the CNN for adaptive context representation learning to cope with the irregular lesion morphologies and blurry boundaries. The state-of-the-art performances on three ultrasound datasets prove the effectiveness of the proposed NeighborNet.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助在远方采纳,获得30
刚刚
刚刚
1秒前
阿会完成签到 ,获得积分10
2秒前
2秒前
专注的问寒应助lgh采纳,获得20
2秒前
科目三应助健康的海采纳,获得10
2秒前
万能图书馆应助科研牛马采纳,获得10
2秒前
量子星尘发布了新的文献求助10
4秒前
共享精神应助强健的水云采纳,获得10
4秒前
共享精神应助jksg采纳,获得10
4秒前
慕青应助张雯雯采纳,获得10
4秒前
4秒前
4秒前
4秒前
DoIt完成签到,获得积分10
5秒前
5秒前
完美世界应助木子剑光军采纳,获得10
5秒前
橘子完成签到,获得积分10
5秒前
JIE发布了新的文献求助10
6秒前
默默友儿发布了新的文献求助10
6秒前
alfredwu94发布了新的文献求助10
6秒前
SMQ发布了新的文献求助10
6秒前
7秒前
狂野宛丝发布了新的文献求助10
7秒前
轮椅发布了新的文献求助10
7秒前
7秒前
星辰大海应助小石头采纳,获得10
8秒前
赘婿应助莎莉采纳,获得10
8秒前
zency发布了新的文献求助10
8秒前
田様应助无敌科研大王采纳,获得10
8秒前
9秒前
9秒前
9秒前
开放映冬完成签到,获得积分10
9秒前
航某人发布了新的文献求助10
10秒前
小小高完成签到 ,获得积分10
10秒前
hongw_liu发布了新的文献求助10
10秒前
weiyongswust完成签到,获得积分10
10秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Chemistry and Biochemistry: Research Progress Vol. 7 430
Biotechnology Engineering 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5629957
求助须知:如何正确求助?哪些是违规求助? 4721200
关于积分的说明 14971845
捐赠科研通 4787915
什么是DOI,文献DOI怎么找? 2556638
邀请新用户注册赠送积分活动 1517713
关于科研通互助平台的介绍 1478320