NeighborNet: Learning Intra- and Inter-Image Pixel Neighbor Representation for Breast Lesion Segmentation

计算机科学 人工智能 分割 像素 模式识别(心理学) 特征学习 特征(语言学) k-最近邻算法 代表(政治) 图像分割 背景(考古学) 计算机视觉 古生物学 哲学 政治 生物 法学 语言学 政治学
作者
Weiwei Cao,Jianfeng Guo,Xiaohui You,Yuxin Liu,Lei Li,Wenju Cui,Yuzhu Cao,Xinjian Chen,Jian Zheng
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-11
标识
DOI:10.1109/jbhi.2024.3400802
摘要

Breast lesion segmentation from ultrasound images is essential in computer-aided breast cancer diagnosis. To alleviate the problems of blurry lesion boundaries and irregular morphologies, common practices combine CNN and attention to integrate global and local information. However, previous methods use two independent modules to extract global and local features separately, such feature-wise inflexible integration ignores the semantic gap between them, resulting in representation redundancy/insufficiency and undesirable restrictions in clinic practices. Moreover, medical images are highly similar to each other due to the imaging methods and human tissues, but the captured global information by transformer-based methods in the medical domain is limited within images, the semantic relations and common knowledge across images are largely ignored. To alleviate the above problems, in the neighbor view, this paper develops a pixel neighbor representation learning method (NeighborNet) to flexibly integrate global and local context within and across images for lesion morphology and boundary modeling. Concretely, we design two neighbor layers to investigate two properties (i.e., number and distribution) of neighbors. The neighbor number for each pixel is not fixed but determined by itself. The neighbor distribution is extended from one image to all images in the datasets. With the two properties, for each pixel at each feature level, the proposed NeighborNet can evolve into the transformer or degenerate into the CNN for adaptive context representation learning to cope with the irregular lesion morphologies and blurry boundaries. The state-of-the-art performances on three ultrasound datasets prove the effectiveness of the proposed NeighborNet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
思源应助Sunyanying采纳,获得10
2秒前
2秒前
YC发布了新的文献求助10
2秒前
4秒前
万能图书馆应助Russia采纳,获得10
4秒前
4秒前
5秒前
5秒前
大模型应助cxwong采纳,获得10
8秒前
Sun发布了新的文献求助10
9秒前
lanshuitai发布了新的文献求助30
9秒前
mitty完成签到,获得积分10
12秒前
aiyu发布了新的文献求助10
12秒前
傻瓜子发布了新的文献求助10
13秒前
14秒前
15秒前
16秒前
落后尔竹完成签到,获得积分10
17秒前
maomao发布了新的文献求助10
17秒前
wei发布了新的文献求助10
18秒前
科研通AI2S应助lanshuitai采纳,获得10
19秒前
天天快乐应助科研通管家采纳,获得10
19秒前
紫菜完成签到,获得积分10
19秒前
科研通AI2S应助科研通管家采纳,获得10
20秒前
fqx379应助科研通管家采纳,获得10
20秒前
科研通AI2S应助科研通管家采纳,获得10
20秒前
20秒前
FashionBoy应助科研通管家采纳,获得10
20秒前
英姑应助科研通管家采纳,获得10
20秒前
20秒前
小二郎应助mitty采纳,获得10
20秒前
武状元发布了新的文献求助10
20秒前
邓力应助科研通管家采纳,获得10
21秒前
慕青应助小龟采纳,获得10
21秒前
wy.he应助科研通管家采纳,获得10
21秒前
领导范儿应助科研通管家采纳,获得10
21秒前
wy.he应助科研通管家采纳,获得10
21秒前
LUJyyyy应助科研通管家采纳,获得10
21秒前
情怀应助科研通管家采纳,获得10
21秒前
高分求助中
Sustainability in Tides Chemistry 1500
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Threaded Harmony: A Sustainable Approach to Fashion 799
Livre et militantisme : La Cité éditeur 1958-1967 500
Retention of title in secured transactions law from a creditor's perspective: A comparative analysis of selected (non-)functional approaches 500
"Sixth plenary session of the Eighth Central Committee of the Communist Party of China" 400
New China Forges Ahead: Important Documents of the Third Session of the First National Committee of the Chinese People's Political Consultative Conference 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3056175
求助须知:如何正确求助?哪些是违规求助? 2712737
关于积分的说明 7432964
捐赠科研通 2357715
什么是DOI,文献DOI怎么找? 1249040
科研通“疑难数据库(出版商)”最低求助积分说明 606843
版权声明 596195