已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

NeighborNet: Learning Intra- and Inter-Image Pixel Neighbor Representation for Breast Lesion Segmentation

计算机科学 人工智能 分割 像素 模式识别(心理学) 特征学习 特征(语言学) k-最近邻算法 代表(政治) 图像分割 计算机视觉 政治 政治学 法学 哲学 语言学
作者
Weiwei Cao,Jianfeng Guo,Xiaohui You,Yuxin Liu,Lei Li,Wenju Cui,Yuzhu Cao,Xinjian Chen,Jian Zheng
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:28 (8): 4761-4771
标识
DOI:10.1109/jbhi.2024.3400802
摘要

Breast lesion segmentation from ultrasound images is essential in computer-aided breast cancer diagnosis. To alleviate the problems of blurry lesion boundaries and irregular morphologies, common practices combine CNN and attention to integrate global and local information. However, previous methods use two independent modules to extract global and local features separately, such feature-wise inflexible integration ignores the semantic gap between them, resulting in representation redundancy/insufficiency and undesirable restrictions in clinic practices. Moreover, medical images are highly similar to each other due to the imaging methods and human tissues, but the captured global information by transformer-based methods in the medical domain is limited within images, the semantic relations and common knowledge across images are largely ignored. To alleviate the above problems, in the neighbor view, this paper develops a pixel neighbor representation learning method (NeighborNet) to flexibly integrate global and local context within and across images for lesion morphology and boundary modeling. Concretely, we design two neighbor layers to investigate two properties (i.e., number and distribution) of neighbors. The neighbor number for each pixel is not fixed but determined by itself. The neighbor distribution is extended from one image to all images in the datasets. With the two properties, for each pixel at each feature level, the proposed NeighborNet can evolve into the transformer or degenerate into the CNN for adaptive context representation learning to cope with the irregular lesion morphologies and blurry boundaries. The state-of-the-art performances on three ultrasound datasets prove the effectiveness of the proposed NeighborNet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
玉玉发布了新的文献求助10
1秒前
Hale完成签到,获得积分0
2秒前
充电宝应助Davidjin采纳,获得10
3秒前
王瑾言发布了新的文献求助10
5秒前
5秒前
6秒前
南城完成签到 ,获得积分10
7秒前
荷兰香猪完成签到,获得积分10
7秒前
8秒前
冰山泥发布了新的文献求助10
8秒前
Anesth_Du发布了新的文献求助30
8秒前
8秒前
10秒前
fairy发布了新的文献求助10
11秒前
12秒前
小冉完成签到 ,获得积分10
12秒前
sugkook发布了新的文献求助10
13秒前
顺利毕业发布了新的文献求助10
13秒前
噗愣噗愣地刚发芽完成签到,获得积分10
13秒前
王瑾言完成签到,获得积分20
14秒前
Crystal发布了新的文献求助10
14秒前
abab完成签到 ,获得积分10
14秒前
奇点完成签到 ,获得积分10
14秒前
15秒前
jiajia完成签到 ,获得积分10
17秒前
18秒前
18秒前
玉玉完成签到,获得积分10
18秒前
sugkook完成签到,获得积分10
19秒前
马騳骉完成签到,获得积分10
19秒前
顺利毕业完成签到,获得积分10
20秒前
orixero应助Crystal采纳,获得10
22秒前
Lucas应助加油小鹿采纳,获得10
24秒前
lyw发布了新的文献求助10
25秒前
Jingshuiliushen完成签到,获得积分10
25秒前
NexusExplorer应助喜悦的威采纳,获得10
25秒前
27秒前
31秒前
小马甲应助科研通管家采纳,获得10
32秒前
科研通AI6应助科研通管家采纳,获得10
32秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5062976
求助须知:如何正确求助?哪些是违规求助? 4286688
关于积分的说明 13357633
捐赠科研通 4104617
什么是DOI,文献DOI怎么找? 2247558
邀请新用户注册赠送积分活动 1253122
关于科研通互助平台的介绍 1184083