Capabilities of Gemini Models in Medicine

计算机科学
作者
Khaled Saab,Tao Tu,Wei-Hung Weng,Ryutaro Tanno,David Stutz,Ellery Wulczyn,Fan Zhang,Tim Strother,Chunjong Park,Elahe Vedadi,Juliana Ramos Chaves,Song-Qing Hu,Mike Schaekermann,Aishwarya Kamath,Yong Cheng,David G. T. Barrett,Catherine Cheung,Basil Mustafa,Anil Palepu,Daniel McDuff,Lei Hou,Tomer Golany,Luyang Liu,Jean-baptiste Alayrac,Neil Houlsby,Nenad Tomašev,Jan Freyberg,Charles Lau,Jonas Kemp,Jeremy Lai,Shekoofeh Azizi,Kimberly Kanada,Shan Man,Kavita Kulkarni,Robert Sun,Siamak Shakeri,Luheng He,Ben Caine,Albert Webson,Natasha Latysheva,Melvin Johnson,Philip Mansfield,Jiazeng Sun,Ehud Rivlin,Jean Anderson,Bradley Green,Renee Wong,Jonathan Krause,Jonathon Shlens,Ewa Dominowska,S. M. Ali Eslami,Claire Cui,Oriol Vinyals,Koray Kavukcuoglu,James Manyika,Jeff Dean,Demis Hassabis,Yossi Matias,D. R. Webster,Joëlle Barral,Greg S. Corrado,Christopher Semturs,S. Sara Mahdavi,Juraj Gottweis,Alan Karthikesalingam,Vivek Natarajan
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2404.18416
摘要

Excellence in a wide variety of medical applications poses considerable challenges for AI, requiring advanced reasoning, access to up-to-date medical knowledge and understanding of complex multimodal data. Gemini models, with strong general capabilities in multimodal and long-context reasoning, offer exciting possibilities in medicine. Building on these core strengths of Gemini, we introduce Med-Gemini, a family of highly capable multimodal models that are specialized in medicine with the ability to seamlessly use web search, and that can be efficiently tailored to novel modalities using custom encoders. We evaluate Med-Gemini on 14 medical benchmarks, establishing new state-of-the-art (SoTA) performance on 10 of them, and surpass the GPT-4 model family on every benchmark where a direct comparison is viable, often by a wide margin. On the popular MedQA (USMLE) benchmark, our best-performing Med-Gemini model achieves SoTA performance of 91.1% accuracy, using a novel uncertainty-guided search strategy. On 7 multimodal benchmarks including NEJM Image Challenges and MMMU (health & medicine), Med-Gemini improves over GPT-4V by an average relative margin of 44.5%. We demonstrate the effectiveness of Med-Gemini's long-context capabilities through SoTA performance on a needle-in-a-haystack retrieval task from long de-identified health records and medical video question answering, surpassing prior bespoke methods using only in-context learning. Finally, Med-Gemini's performance suggests real-world utility by surpassing human experts on tasks such as medical text summarization, alongside demonstrations of promising potential for multimodal medical dialogue, medical research and education. Taken together, our results offer compelling evidence for Med-Gemini's potential, although further rigorous evaluation will be crucial before real-world deployment in this safety-critical domain.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
共享精神应助小青柠采纳,获得10
刚刚
2秒前
淙淙完成签到,获得积分10
6秒前
song完成签到 ,获得积分10
6秒前
善学以致用应助漂泊1991采纳,获得10
7秒前
当蒋不当蒋完成签到 ,获得积分10
7秒前
天天快乐应助一裤子灰采纳,获得10
7秒前
mizusu发布了新的文献求助10
8秒前
Captain发布了新的文献求助10
8秒前
8秒前
10秒前
shadow完成签到,获得积分10
10秒前
淡水鱼完成签到 ,获得积分10
11秒前
13秒前
千迁jiu发布了新的文献求助10
13秒前
zzz发布了新的文献求助10
14秒前
17秒前
19秒前
木木三完成签到,获得积分10
20秒前
21秒前
小梁呀发布了新的文献求助10
22秒前
彭于晏应助陶弈衡采纳,获得10
23秒前
安然发布了新的文献求助10
24秒前
suuri发布了新的文献求助10
24秒前
大模型应助NZH采纳,获得10
25秒前
hjq发布了新的文献求助10
26秒前
脑洞疼应助月月呀采纳,获得10
27秒前
27秒前
一只猪仔777完成签到,获得积分10
27秒前
27秒前
竹子发布了新的文献求助10
32秒前
李健应助NZH采纳,获得10
32秒前
醉熏的井发布了新的文献求助10
32秒前
Echo1002发布了新的文献求助10
33秒前
酷波er应助大力的镜子采纳,获得10
36秒前
38秒前
38秒前
Majician完成签到,获得积分10
41秒前
41秒前
科研小白完成签到,获得积分10
42秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3161007
求助须知:如何正确求助?哪些是违规求助? 2812335
关于积分的说明 7895242
捐赠科研通 2471208
什么是DOI,文献DOI怎么找? 1315908
科研通“疑难数据库(出版商)”最低求助积分说明 631071
版权声明 602086