Deep Lead Optimization: Leveraging Generative AI for Structural Modification

生成语法 铅(地质) 计算机科学 人工智能 地质学 地貌学
作者
Odin Zhang,Haitao Lin,Hui Zhang,Huifeng Zhao,Yufei Huang,Yuansheng Huang,Dejun Jiang,Chang‐Yu Hsieh,Peichen Pan,Tingjun Hou
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2404.19230
摘要

The idea of using deep-learning-based molecular generation to accelerate discovery of drug candidates has attracted extraordinary attention, and many deep generative models have been developed for automated drug design, termed molecular generation. In general, molecular generation encompasses two main strategies: de novo design, which generates novel molecular structures from scratch, and lead optimization, which refines existing molecules into drug candidates. Among them, lead optimization plays an important role in real-world drug design. For example, it can enable the development of me-better drugs that are chemically distinct yet more effective than the original drugs. It can also facilitate fragment-based drug design, transforming virtual-screened small ligands with low affinity into first-in-class medicines. Despite its importance, automated lead optimization remains underexplored compared to the well-established de novo generative models, due to its reliance on complex biological and chemical knowledge. To bridge this gap, we conduct a systematic review of traditional computational methods for lead optimization, organizing these strategies into four principal sub-tasks with defined inputs and outputs. This review delves into the basic concepts, goals, conventional CADD techniques, and recent advancements in AIDD. Additionally, we introduce a unified perspective based on constrained subgraph generation to harmonize the methodologies of de novo design and lead optimization. Through this lens, de novo design can incorporate strategies from lead optimization to address the challenge of generating hard-to-synthesize molecules; inversely, lead optimization can benefit from the innovations in de novo design by approaching it as a task of generating molecules conditioned on certain substructures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
印染发布了新的文献求助10
1秒前
可爱的函函应助香蕉以菱采纳,获得10
2秒前
3秒前
MLi发布了新的文献求助10
4秒前
胖川完成签到,获得积分10
4秒前
5秒前
生信人完成签到 ,获得积分10
5秒前
kiteWYL完成签到,获得积分10
5秒前
执着俊驰发布了新的文献求助10
6秒前
7秒前
yzy发布了新的文献求助10
7秒前
景辣条应助jessica采纳,获得10
8秒前
MLi完成签到,获得积分10
10秒前
10秒前
水心完成签到 ,获得积分10
10秒前
从容的文涛给从容的文涛的求助进行了留言
11秒前
赘婿应助Yolo采纳,获得10
12秒前
脑洞疼应助深情的迎海采纳,获得10
12秒前
Jason发布了新的文献求助10
12秒前
赘婿应助Jiang-Yujia采纳,获得10
13秒前
15秒前
Triumph完成签到,获得积分10
16秒前
16秒前
16秒前
17秒前
yzy完成签到,获得积分10
18秒前
微笑的涛发布了新的文献求助10
19秒前
19秒前
19秒前
由怜雪完成签到,获得积分10
19秒前
20秒前
Akim应助nova采纳,获得10
20秒前
xhn完成签到 ,获得积分10
21秒前
wpz完成签到,获得积分10
21秒前
情怀应助段菲鹰采纳,获得10
22秒前
22秒前
wanci应助可靠的寒风采纳,获得20
22秒前
23秒前
24秒前
高分求助中
Shape Determination of Large Sedimental Rock Fragments 2000
Sustainability in Tides Chemistry 2000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3129330
求助须知:如何正确求助?哪些是违规求助? 2780114
关于积分的说明 7746436
捐赠科研通 2435295
什么是DOI,文献DOI怎么找? 1294036
科研通“疑难数据库(出版商)”最低求助积分说明 623516
版权声明 600542