Deep Lead Optimization: Leveraging Generative AI for Structural Modification

生成语法 铅(地质) 计算机科学 人工智能 地质学 地貌学
作者
Odin Zhang,Haitao Lin,Hui Zhang,Huifeng Zhao,Yufei Huang,Yuansheng Huang,Dejun Jiang,Chang‐Yu Hsieh,Peichen Pan,Tingjun Hou
出处
期刊:Cornell University - arXiv 被引量:1
标识
DOI:10.48550/arxiv.2404.19230
摘要

The idea of using deep-learning-based molecular generation to accelerate discovery of drug candidates has attracted extraordinary attention, and many deep generative models have been developed for automated drug design, termed molecular generation. In general, molecular generation encompasses two main strategies: de novo design, which generates novel molecular structures from scratch, and lead optimization, which refines existing molecules into drug candidates. Among them, lead optimization plays an important role in real-world drug design. For example, it can enable the development of me-better drugs that are chemically distinct yet more effective than the original drugs. It can also facilitate fragment-based drug design, transforming virtual-screened small ligands with low affinity into first-in-class medicines. Despite its importance, automated lead optimization remains underexplored compared to the well-established de novo generative models, due to its reliance on complex biological and chemical knowledge. To bridge this gap, we conduct a systematic review of traditional computational methods for lead optimization, organizing these strategies into four principal sub-tasks with defined inputs and outputs. This review delves into the basic concepts, goals, conventional CADD techniques, and recent advancements in AIDD. Additionally, we introduce a unified perspective based on constrained subgraph generation to harmonize the methodologies of de novo design and lead optimization. Through this lens, de novo design can incorporate strategies from lead optimization to address the challenge of generating hard-to-synthesize molecules; inversely, lead optimization can benefit from the innovations in de novo design by approaching it as a task of generating molecules conditioned on certain substructures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
戴亮应助科研通管家采纳,获得10
1秒前
宅多点应助科研通管家采纳,获得10
1秒前
小马甲应助科研通管家采纳,获得10
1秒前
Hanoi347应助科研通管家采纳,获得10
1秒前
guo完成签到 ,获得积分10
1秒前
浮游应助科研通管家采纳,获得10
1秒前
打打应助科研通管家采纳,获得10
2秒前
顾矜应助科研通管家采纳,获得10
2秒前
天天快乐应助科研通管家采纳,获得10
2秒前
科研通AI6应助科研通管家采纳,获得100
2秒前
丘比特应助科研通管家采纳,获得10
2秒前
浮游应助科研通管家采纳,获得10
2秒前
英俊的铭应助科研通管家采纳,获得10
2秒前
浮游应助科研通管家采纳,获得10
2秒前
慕青应助科研通管家采纳,获得10
2秒前
2秒前
浮游应助科研通管家采纳,获得10
2秒前
Hanoi347应助科研通管家采纳,获得10
2秒前
orixero应助科研通管家采纳,获得10
2秒前
852应助科研通管家采纳,获得20
2秒前
2秒前
宅多点应助科研通管家采纳,获得10
2秒前
无极微光应助科研通管家采纳,获得20
2秒前
思源应助科研通管家采纳,获得10
2秒前
浮游应助科研通管家采纳,获得10
2秒前
浮游应助科研通管家采纳,获得10
2秒前
2秒前
3秒前
Jodie发布了新的文献求助10
4秒前
6秒前
Lilian完成签到 ,获得积分10
7秒前
小毛豆发布了新的文献求助10
7秒前
a楠发布了新的文献求助10
10秒前
11秒前
13秒前
13秒前
周城完成签到 ,获得积分10
18秒前
隐形的凡阳应助小毛豆采纳,获得10
18秒前
bkagyin应助小毛豆采纳,获得50
18秒前
慕青应助谈笑有鸿儒采纳,获得10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5560339
求助须知:如何正确求助?哪些是违规求助? 4645494
关于积分的说明 14675277
捐赠科研通 4586593
什么是DOI,文献DOI怎么找? 2516488
邀请新用户注册赠送积分活动 1490109
关于科研通互助平台的介绍 1460915