Deep Lead Optimization: Leveraging Generative AI for Structural Modification

生成语法 铅(地质) 计算机科学 人工智能 地质学 地貌学
作者
Odin Zhang,Haitao Lin,Hui Zhang,Huifeng Zhao,Yufei Huang,Yuansheng Huang,Dejun Jiang,Chang‐Yu Hsieh,Peichen Pan,Tingjun Hou
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2404.19230
摘要

The idea of using deep-learning-based molecular generation to accelerate discovery of drug candidates has attracted extraordinary attention, and many deep generative models have been developed for automated drug design, termed molecular generation. In general, molecular generation encompasses two main strategies: de novo design, which generates novel molecular structures from scratch, and lead optimization, which refines existing molecules into drug candidates. Among them, lead optimization plays an important role in real-world drug design. For example, it can enable the development of me-better drugs that are chemically distinct yet more effective than the original drugs. It can also facilitate fragment-based drug design, transforming virtual-screened small ligands with low affinity into first-in-class medicines. Despite its importance, automated lead optimization remains underexplored compared to the well-established de novo generative models, due to its reliance on complex biological and chemical knowledge. To bridge this gap, we conduct a systematic review of traditional computational methods for lead optimization, organizing these strategies into four principal sub-tasks with defined inputs and outputs. This review delves into the basic concepts, goals, conventional CADD techniques, and recent advancements in AIDD. Additionally, we introduce a unified perspective based on constrained subgraph generation to harmonize the methodologies of de novo design and lead optimization. Through this lens, de novo design can incorporate strategies from lead optimization to address the challenge of generating hard-to-synthesize molecules; inversely, lead optimization can benefit from the innovations in de novo design by approaching it as a task of generating molecules conditioned on certain substructures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
weiwan发布了新的文献求助10
刚刚
思源应助谨慎山彤采纳,获得10
1秒前
renzo完成签到,获得积分10
1秒前
shirley发布了新的文献求助10
2秒前
迷人雅容完成签到,获得积分10
2秒前
赤练仙子完成签到,获得积分10
2秒前
4秒前
4秒前
36456657应助hututu采纳,获得10
4秒前
输入法应助xiaomings007采纳,获得10
5秒前
5秒前
向中恶发布了新的文献求助10
6秒前
阳光盼山完成签到,获得积分10
6秒前
Hima完成签到,获得积分10
8秒前
小蘑菇应助huangyi采纳,获得10
8秒前
成就初彤发布了新的文献求助10
9秒前
安详的斑马应助努力的学采纳,获得20
9秒前
King发布了新的文献求助10
9秒前
9秒前
天才小张发布了新的文献求助10
11秒前
风为裳完成签到,获得积分10
12秒前
一一完成签到,获得积分20
13秒前
13秒前
苏卿应助繁华采纳,获得10
13秒前
完美世界应助mk采纳,获得10
14秒前
MCY发布了新的文献求助10
14秒前
早早入眠完成签到,获得积分10
15秒前
Ava应助who采纳,获得10
15秒前
16秒前
cc发布了新的文献求助10
16秒前
yck1027完成签到,获得积分10
16秒前
17秒前
johnny完成签到,获得积分10
18秒前
荔枝的油饼iKun完成签到,获得积分10
19秒前
小摩尔完成签到 ,获得积分10
19秒前
哆吉吖完成签到,获得积分10
20秒前
科研通AI5应助谨慎山彤采纳,获得10
21秒前
21秒前
21秒前
shirley完成签到,获得积分10
22秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Conference Record, IAS Annual Meeting 1977 1250
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
APA educational psychology handbook, Vol 1: Theories, constructs, and critical issues 700
An Annotated Checklist of Dinosaur Species by Continent 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3652247
求助须知:如何正确求助?哪些是违规求助? 3216485
关于积分的说明 9712113
捐赠科研通 2924205
什么是DOI,文献DOI怎么找? 1601585
邀请新用户注册赠送积分活动 754250
科研通“疑难数据库(出版商)”最低求助积分说明 733019