已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Deep Lead Optimization: Leveraging Generative AI for Structural Modification

生成语法 铅(地质) 计算机科学 人工智能 地质学 地貌学
作者
Odin Zhang,Haitao Lin,Hui Zhang,Huifeng Zhao,Yufei Huang,Yuansheng Huang,Dejun Jiang,Chang‐Yu Hsieh,Peichen Pan,Tingjun Hou
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2404.19230
摘要

The idea of using deep-learning-based molecular generation to accelerate discovery of drug candidates has attracted extraordinary attention, and many deep generative models have been developed for automated drug design, termed molecular generation. In general, molecular generation encompasses two main strategies: de novo design, which generates novel molecular structures from scratch, and lead optimization, which refines existing molecules into drug candidates. Among them, lead optimization plays an important role in real-world drug design. For example, it can enable the development of me-better drugs that are chemically distinct yet more effective than the original drugs. It can also facilitate fragment-based drug design, transforming virtual-screened small ligands with low affinity into first-in-class medicines. Despite its importance, automated lead optimization remains underexplored compared to the well-established de novo generative models, due to its reliance on complex biological and chemical knowledge. To bridge this gap, we conduct a systematic review of traditional computational methods for lead optimization, organizing these strategies into four principal sub-tasks with defined inputs and outputs. This review delves into the basic concepts, goals, conventional CADD techniques, and recent advancements in AIDD. Additionally, we introduce a unified perspective based on constrained subgraph generation to harmonize the methodologies of de novo design and lead optimization. Through this lens, de novo design can incorporate strategies from lead optimization to address the challenge of generating hard-to-synthesize molecules; inversely, lead optimization can benefit from the innovations in de novo design by approaching it as a task of generating molecules conditioned on certain substructures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
我爱科研科研也爱我完成签到,获得积分10
2秒前
爱lx完成签到,获得积分10
4秒前
开朗冬萱完成签到 ,获得积分10
5秒前
RONG完成签到 ,获得积分10
5秒前
shentaii完成签到,获得积分10
6秒前
刘露完成签到,获得积分20
8秒前
12秒前
13秒前
平常的柠檬完成签到,获得积分10
13秒前
义气傲薇发布了新的文献求助10
15秒前
23秒前
负责的哑铃完成签到,获得积分10
24秒前
大模型应助kk采纳,获得10
25秒前
28秒前
xs完成签到,获得积分10
32秒前
斯文的慕儿完成签到 ,获得积分10
32秒前
情怀应助112采纳,获得10
33秒前
33秒前
36秒前
yotta发布了新的文献求助10
37秒前
37秒前
rjtmu发布了新的文献求助10
44秒前
46秒前
LANER完成签到,获得积分10
48秒前
rjtmu完成签到,获得积分10
51秒前
52秒前
mashibeo完成签到,获得积分10
54秒前
Owen应助科研通管家采纳,获得10
54秒前
共享精神应助科研通管家采纳,获得10
54秒前
科研通AI2S应助科研通管家采纳,获得10
55秒前
科研通AI2S应助科研通管家采纳,获得10
55秒前
强健的迎波完成签到,获得积分10
55秒前
LANER发布了新的文献求助10
59秒前
yyyyyyyyyyyiiii完成签到 ,获得积分10
1分钟前
司忆完成签到 ,获得积分10
1分钟前
alan完成签到 ,获得积分10
1分钟前
直率奇迹完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
亓雅丽发布了新的文献求助10
1分钟前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965542
求助须知:如何正确求助?哪些是违规求助? 3510831
关于积分的说明 11155263
捐赠科研通 3245323
什么是DOI,文献DOI怎么找? 1792808
邀请新用户注册赠送积分活动 874110
科研通“疑难数据库(出版商)”最低求助积分说明 804176