双功能
原子层沉积
电池(电)
电极
图层(电子)
催化作用
材料科学
沉积(地质)
锌
无机化学
氧化物
原子层外延
化学工程
冶金
纳米技术
化学
有机化学
古生物学
功率(物理)
物理
物理化学
量子力学
沉积物
工程类
生物
作者
Matthew Labbe,M.P. Clark,Ken Cadien,Douglas G. Ivey
标识
DOI:10.1002/batt.202400133
摘要
Abstract Zinc‐air batteries (ZABs) are one of many energy storage technologies that can help integrate renewable energy into the power grid. A key developmental goal for ZABs is replacing the precious metal catalysts at the air electrode with more abundant and inexpensive materials. In this work, a MnFe x O y bifunctional catalyst is directly deposited on a ZAB air electrode using atomic layer deposition (ALD). With ALD, the atomic composition of the air electrode coating can be finely tuned based on catalytic activity. Characterization through electron microscopy, photoelectron spectroscopy and diffraction techniques indicate that the novel ALD film deposits as a nanocrystalline (Mn,Fe) 3 O 4 cubic spinel. The mixed oxide catalyst outperforms its individual binary MnO x or FeO x constituents, operating at 52.5 % bifunctional efficiency at 20 mA cm −2 . Moreover, the long term stability of the ALD catalyst is showcased by 600 h (1565 cycles) of ZAB cycling at 10 mA cm −2 . The efficiency retention of the bifunctional transition metal oxide catalyst is superior to a precious metal benchmark of Pt−Ru−C, with 84.7 % efficiency retention after more than 1500 cycles versus only 66.2 % retention for the precious metal catalyst. The ALD technique enables deep penetration of catalyst material into the air electrode structure, improving the cycling behaviour.
科研通智能强力驱动
Strongly Powered by AbleSci AI