Offshore wind energy potential in Shandong Sea of China revealed by ERA5 reanalysis data and remote sensing

海上风力发电 环境科学 海底管道 风力发电 风速 海风 气象学 中国 海洋学 地理 地质学 工程类 电气工程 考古
作者
Longxing Liu,Mengquan Wu,Yunfei Mao,Longxiao Zheng,Mingyue Xue,Lei Bing,Feng Liang,Jiayan Liu,Bowen Liu
出处
期刊:Journal of Cleaner Production [Elsevier]
卷期号:464: 142745-142745 被引量:2
标识
DOI:10.1016/j.jclepro.2024.142745
摘要

The scale of offshore wind energy has been rapidly growing worldwide in recent years. Accurate assessment of the offshore wind energy potential and emission reduction benefits is essential to realize the ambitious targets for future installations. In this study, the Shandong Sea of China was selected as a case study, and the long-term offshore wind energy potential was assessed using ERA5 reanalysis data for the last 30 years, including the spatio-temporal variation and the technical potential of wind resources. An innovative approach to evaluate the technical potential of installed offshore wind farms based on deep learning, satellite images and ERA5 reanalysis data was proposed and applied to the Shandong Sea. The results show that (1) the highest offshore wind energy potential is observed in the northeast sea of Weihai; (2) the inter-annual variation of wind resources is relatively modest, with a pronounced monthly variability. The richest wind resources are found in the spring; (3) the electricity generation of wind resources is 12.66∼30.53 GWh/year, equivalent to a reduction of 9.35∼22.55 Kt of CO2 emissions; (4) as of 2023, there were 12 OWFs including 633 offshore wind turbines in Shandong Sea, generating 14,218 GWh/year of clean electricity and reducing 10,505 Kt/year of CO2 emissions. The method proposed in this study is applicable to both small- and large-scale areas and allows for an accurate assessment of the electricity generation from installed offshore wind farms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
霜降发布了新的文献求助10
刚刚
科研通AI5应助gdpu_omics采纳,获得10
刚刚
欣喜的曼柔完成签到,获得积分10
刚刚
科研通AI5应助jijahui采纳,获得10
刚刚
草莓雪酪发布了新的文献求助10
1秒前
勤恳的TT完成签到 ,获得积分10
1秒前
1秒前
兴奋芷完成签到,获得积分10
1秒前
逆光流发布了新的文献求助10
2秒前
Rainor完成签到,获得积分10
2秒前
czb完成签到,获得积分10
3秒前
甜美三娘完成签到,获得积分10
3秒前
科研通AI5应助傲公子采纳,获得10
3秒前
XLH发布了新的文献求助10
3秒前
3秒前
Damon2024发布了新的文献求助10
4秒前
4秒前
4秒前
dawei完成签到,获得积分10
4秒前
糖宝完成签到,获得积分10
4秒前
犹豫的期待完成签到,获得积分10
4秒前
4秒前
5秒前
PAPA完成签到,获得积分10
5秒前
认真的金针菇完成签到,获得积分10
5秒前
blueming完成签到,获得积分10
6秒前
Mengzhen Du完成签到,获得积分10
6秒前
zmk完成签到,获得积分10
6秒前
苗儿完成签到,获得积分10
7秒前
阔达棉花糖完成签到,获得积分10
7秒前
糖宝发布了新的文献求助10
7秒前
王哈哈完成签到,获得积分10
7秒前
今后应助程风破浪采纳,获得10
8秒前
调皮囧完成签到 ,获得积分10
8秒前
csy发布了新的文献求助10
8秒前
桐桐应助kzn采纳,获得10
8秒前
草莓雪酪完成签到,获得积分10
8秒前
木木木又寸完成签到,获得积分10
9秒前
晨霜发布了新的文献求助10
9秒前
9秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
The Laschia-complex (Basidiomycetes) 600
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
Dynamika przenośników łańcuchowych 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3539974
求助须知:如何正确求助?哪些是违规求助? 3117517
关于积分的说明 9331271
捐赠科研通 2815252
什么是DOI,文献DOI怎么找? 1547491
邀请新用户注册赠送积分活动 720990
科研通“疑难数据库(出版商)”最低求助积分说明 712395