亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

FDAENet: frequency domain attention encoder-decoder network for road extraction of remote sensing images

计算机科学 频域 编码器 萃取(化学) 遥感 解码方法 人工智能 特征提取 计算机视觉 电信 地质学 色谱法 操作系统 化学
作者
Hai Huan,Bo Zhang
出处
期刊:Journal of Applied Remote Sensing [SPIE]
卷期号:18 (02)
标识
DOI:10.1117/1.jrs.18.024510
摘要

Road information is a crucial type of geographic information. The extraction of road information from remote sensing images has been widely applied in various fields such as mapping, transportation, and navigation. However, due to the obstruction of buildings, trees, and shadows, or the spectral similarity between roads and buildings, road extraction remains a challenging research topic. Most current methods focus only on the spatial domain, neglecting the information contained in the image frequency domain. Therefore, this work proposes a remote sensing image road extraction model, frequency domain attention encoder-decoder network (FDAENet). This model mainly consists of three parts. First, the encoder is composed of frequency domain transformer modules (FDTMs). The gnConv in the FDTM includes depthwise separable convolution and phase and magnitude (PM) filters, where the PM filter contains a global filter and phase and amplitude filters located in two parallel layers, used to extract feature information of road remote sensing images from the frequency domain. Then, a multi-scale context extraction module is proposed, which introduces appropriate road context information to enhance inference capability. Finally, a stripe convolution module is introduced to capture long-distance context information from four different directions. Experiments on public road datasets show that FDAENet performs excellently in terms of F1, intersection over union, average path length similarity, and other indicators. Visualization results show that FDAENet performs better in extracting complex roads and can effectively extract roads from high-resolution remote sensing images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
沉默白桃完成签到 ,获得积分10
31秒前
感动清炎完成签到,获得积分10
41秒前
Ava应助oleskarabach采纳,获得10
46秒前
2分钟前
领导范儿应助gszy1975采纳,获得10
3分钟前
靓丽的熠彤完成签到,获得积分10
3分钟前
4分钟前
四氧化三铁完成签到,获得积分10
4分钟前
4分钟前
云云发布了新的文献求助10
4分钟前
wuju完成签到,获得积分10
4分钟前
Raunio完成签到,获得积分10
4分钟前
共享精神应助科研通管家采纳,获得10
5分钟前
Tales完成签到 ,获得积分10
5分钟前
KINGAZX完成签到 ,获得积分10
6分钟前
武雨珍完成签到,获得积分10
6分钟前
7分钟前
gszy1975发布了新的文献求助10
7分钟前
Jasper应助科研通管家采纳,获得10
7分钟前
FashionBoy应助thchiang采纳,获得10
7分钟前
852应助陈杰采纳,获得10
7分钟前
科研通AI5应助马良采纳,获得10
8分钟前
小米的稻田完成签到 ,获得积分10
8分钟前
9分钟前
马良发布了新的文献求助10
9分钟前
Jasper应助专注的子骞采纳,获得10
9分钟前
9分钟前
10分钟前
10分钟前
DPmmm发布了新的文献求助10
10分钟前
10分钟前
现实的俊驰完成签到 ,获得积分10
10分钟前
Akim应助Frank采纳,获得10
11分钟前
12分钟前
再给我来点抽象的应助Jim采纳,获得10
12分钟前
科研通AI5应助榆果子采纳,获得10
13分钟前
fufufu123完成签到 ,获得积分10
13分钟前
孙孙应助Jim采纳,获得30
14分钟前
充电宝应助EliotFang采纳,获得10
14分钟前
14分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
On the Validity of the Independent-Particle Model and the Sum-rule Approach to the Deeply Bound States in Nuclei 220
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4582395
求助须知:如何正确求助?哪些是违规求助? 4000118
关于积分的说明 12382192
捐赠科研通 3675087
什么是DOI,文献DOI怎么找? 2025689
邀请新用户注册赠送积分活动 1059330
科研通“疑难数据库(出版商)”最低求助积分说明 946014