FDAENet: frequency domain attention encoder-decoder network for road extraction of remote sensing images

计算机科学 频域 编码器 萃取(化学) 遥感 解码方法 人工智能 特征提取 计算机视觉 电信 地质学 化学 色谱法 操作系统
作者
Hai Huan,Bo Zhang
出处
期刊:Journal of Applied Remote Sensing [SPIE - International Society for Optical Engineering]
卷期号:18 (02)
标识
DOI:10.1117/1.jrs.18.024510
摘要

Road information is a crucial type of geographic information. The extraction of road information from remote sensing images has been widely applied in various fields such as mapping, transportation, and navigation. However, due to the obstruction of buildings, trees, and shadows, or the spectral similarity between roads and buildings, road extraction remains a challenging research topic. Most current methods focus only on the spatial domain, neglecting the information contained in the image frequency domain. Therefore, this work proposes a remote sensing image road extraction model, frequency domain attention encoder-decoder network (FDAENet). This model mainly consists of three parts. First, the encoder is composed of frequency domain transformer modules (FDTMs). The gnConv in the FDTM includes depthwise separable convolution and phase and magnitude (PM) filters, where the PM filter contains a global filter and phase and amplitude filters located in two parallel layers, used to extract feature information of road remote sensing images from the frequency domain. Then, a multi-scale context extraction module is proposed, which introduces appropriate road context information to enhance inference capability. Finally, a stripe convolution module is introduced to capture long-distance context information from four different directions. Experiments on public road datasets show that FDAENet performs excellently in terms of F1, intersection over union, average path length similarity, and other indicators. Visualization results show that FDAENet performs better in extracting complex roads and can effectively extract roads from high-resolution remote sensing images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
factor完成签到,获得积分10
刚刚
Hello应助李来仪采纳,获得10
1秒前
SEV发布了新的文献求助10
1秒前
1秒前
1秒前
坚强亦丝应助隐形机器猫采纳,获得10
2秒前
小马甲应助SCI采纳,获得10
3秒前
老疯智发布了新的文献求助10
3秒前
sweetbearm应助通~采纳,获得10
3秒前
神凰完成签到,获得积分10
3秒前
Z小姐发布了新的文献求助10
4秒前
NexusExplorer应助白泽采纳,获得10
4秒前
5秒前
5秒前
火星上妙梦完成签到 ,获得积分10
5秒前
赘婿应助mayungui采纳,获得10
5秒前
贾不可发布了新的文献求助10
6秒前
英俊梦槐发布了新的文献求助30
6秒前
Xu完成签到,获得积分10
7秒前
7秒前
秀丽千山完成签到,获得积分10
7秒前
8秒前
9秒前
哈哈哈哈完成签到,获得积分10
9秒前
沧海泪发布了新的文献求助10
10秒前
小胡先森应助凤凰山采纳,获得10
10秒前
一一完成签到,获得积分10
10秒前
惠惠发布了新的文献求助10
10秒前
shotgod完成签到,获得积分20
11秒前
科研通AI5应助蕾子采纳,获得10
11秒前
happy杨完成签到 ,获得积分10
11秒前
lichaoyes发布了新的文献求助10
11秒前
11秒前
Owen应助通~采纳,获得10
11秒前
封闭货车发布了新的文献求助10
12秒前
12秒前
www发布了新的文献求助10
13秒前
13秒前
13秒前
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794