Rolling bearing fault diagnosis based on DRS frequency spectrum image and improved DQN

断层(地质) 图像(数学) 方位(导航) 计算机科学 频谱 光谱(功能分析) 控制理论(社会学) 声学 物理 人工智能 地质学 光谱密度 电信 控制(管理) 地震学 量子力学
作者
Jiatai Chen,H.-C. Wang,Botao Su,Zhuoxian Li
出处
期刊:Transactions of The Canadian Society for Mechanical Engineering [Canadian Science Publishing]
标识
DOI:10.1139/tcsme-2024-0020
摘要

Deep learning may encounter challenges in fault diagnosis, such as exploration capability, long-term planning, and handling non-deterministic factors. The paper introduces a novel fault diagnosis method for rolling bearings combining deep Q-network (DQN) with discrete random separation (DRS) frequency spectrum images. DRS can be used to separate the deterministic components and random components of the fault signal and extract the fault feature very effectively. The improved DQN incorporates the atrous spatial pyramid pooling module for multiscale contextual fault feature extraction, enhancing diagnosis accuracy. Various deep networks, including convolutional neural network, ResNet18, traditional DQN, and the improved DQN, are employed with different frequency spectrum images (power spectral density, cepstrum, and DRS) for diagnosing bearing faults. Simulation results demonstrate that combining DRS frequency spectrum images with the improved DQN enhances fault diagnosis accuracy across diverse conditions. Generalization tests reveal strong capability of the proposed method in handling conditions different from the training data. Validation tests on difficult-to-diagnose fault data from the CWRU-bearing dataset demonstrate commendable performance of the improved DQN, even on difficult datasets. Finally, validation tests using the XJTU–SY bearing dataset reaffirm the excellent performance and robust adaptability of the improved DQN in conjunction with DRS frequency spectrum images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
老实志泽完成签到,获得积分20
刚刚
刚刚
刚刚
刚刚
hata完成签到,获得积分10
刚刚
Pangsj完成签到,获得积分10
1秒前
1秒前
青蛙旅行完成签到 ,获得积分10
1秒前
FashionBoy应助科研通管家采纳,获得10
1秒前
小蘑菇应助科研通管家采纳,获得10
1秒前
小马甲应助科研通管家采纳,获得10
1秒前
Orange应助科研通管家采纳,获得10
2秒前
小马甲应助mimi采纳,获得10
2秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
英姑应助科研通管家采纳,获得10
2秒前
雪白问兰应助科研通管家采纳,获得30
2秒前
汉堡包应助科研通管家采纳,获得10
2秒前
zzzzzz应助科研通管家采纳,获得20
2秒前
2秒前
爆米花应助科研通管家采纳,获得10
2秒前
sidegate应助科研通管家采纳,获得10
2秒前
prosperp应助科研通管家采纳,获得10
2秒前
香蕉觅云应助科研通管家采纳,获得10
2秒前
li完成签到,获得积分10
2秒前
2秒前
mlml完成签到,获得积分10
2秒前
orixero应助科研通管家采纳,获得10
2秒前
科研通AI5应助科研通管家采纳,获得10
2秒前
小马甲应助科研通管家采纳,获得10
2秒前
Hello应助科研通管家采纳,获得10
2秒前
Zn应助科研通管家采纳,获得10
2秒前
NexusExplorer应助科研通管家采纳,获得10
2秒前
充电宝应助科研通管家采纳,获得10
2秒前
Jasper应助科研通管家采纳,获得10
2秒前
Zn应助科研通管家采纳,获得10
2秒前
慕青应助科研通管家采纳,获得10
3秒前
所所应助科研通管家采纳,获得10
3秒前
烟花应助科研通管家采纳,获得10
3秒前
烟花应助科研通管家采纳,获得10
3秒前
搜集达人应助科研通管家采纳,获得10
3秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672