亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Novel Fusion Network for Apple Image Classification and Quantity Recognition

计算机科学 人工智能 上下文图像分类 融合 图像(数学) 模式识别(心理学) 图像融合 计算机视觉 哲学 语言学
作者
Hanyu Jiang,Z. Wang,Jiahan Chen,Guanyuan Pan,Yingjian Jin
标识
DOI:10.1145/3653781.3653794
摘要

We focuses on identifying images containing apples from a large number of orchard fruit images and determining the number of apples in each filtered image. We propose a CV5Fnet model that combines traditional OpenCV image processing operations with the Watershed Algorithm and YOLO V5. We first build a high-precision, lightweight fruit classifier to accurately filter apple images from five fruit images in the dataset, and pass apple images to the red apple recognition module and the green apple recognition module based on YOLOV5, which are based on the filters, HSV color space conversion, masking operations, and Watershed Algorithm, respectively. The apple pictures are passed to the red apple recognition module based on filter, HSV color space conversion, mask operation, watershed algorithm and the green apple recognition module based on YOLOV5 to recognize the number of red apples and the number of green apples in the target pictures. and green apples in the target picture respectively, and finally sum up to the number of apples in the picture. In the publicly available dataset 2023APMCM_A_2, the accuracy of our fruit classifier is as high as 99.86%, and the final image processing results show that CV5Fnet has achieved good results in recognizing the number of apples.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
FLANKS发布了新的文献求助10
3秒前
平淡的衣完成签到,获得积分10
10秒前
NexusExplorer应助AXX041795采纳,获得10
17秒前
星星科语发布了新的文献求助10
17秒前
简单发布了新的文献求助20
18秒前
魔幻的芳完成签到,获得积分10
22秒前
SSY发布了新的文献求助10
22秒前
火星上的宝马完成签到,获得积分10
25秒前
平淡的衣发布了新的文献求助20
26秒前
27秒前
悲凉的忆南完成签到,获得积分10
28秒前
量子星尘发布了新的文献求助10
32秒前
陈旧完成签到,获得积分10
32秒前
35秒前
35秒前
欣欣子完成签到,获得积分10
36秒前
虚拟的清炎完成签到 ,获得积分10
38秒前
sunstar完成签到,获得积分10
39秒前
XXXXXX发布了新的文献求助10
42秒前
yxl完成签到,获得积分10
43秒前
可耐的盈完成签到,获得积分10
46秒前
绿毛水怪完成签到,获得积分10
49秒前
yg发布了新的文献求助10
51秒前
lsc完成签到,获得积分10
53秒前
XXXXXX完成签到,获得积分10
55秒前
55秒前
星星科语完成签到,获得积分20
55秒前
小fei完成签到,获得积分10
57秒前
andrele发布了新的文献求助10
1分钟前
麻辣薯条完成签到,获得积分10
1分钟前
hanlin给滕祥的求助进行了留言
1分钟前
时尚身影完成签到,获得积分10
1分钟前
leoduo完成签到,获得积分0
1分钟前
ryx发布了新的文献求助10
1分钟前
流苏2完成签到,获得积分10
1分钟前
1分钟前
斯文败类应助科研通管家采纳,获得30
1分钟前
上官若男应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5723656
求助须知:如何正确求助?哪些是违规求助? 5279993
关于积分的说明 15299011
捐赠科研通 4872033
什么是DOI,文献DOI怎么找? 2616484
邀请新用户注册赠送积分活动 1566311
关于科研通互助平台的介绍 1523187