Integrating intratumoral and peritumoral radiomics with deep transfer learning for DCE-MRI breast lesion differentiation: A multicenter study comparing performance with radiologists

医学 无线电技术 放射科 乳房磁振造影 乳房成像 磁共振成像 乳腺肿瘤 多中心研究 乳腺癌 病理 乳腺摄影术 内科学 癌症 随机对照试验
作者
Tao Yu,Renqiang Yu,Mengqi Liu,Xinyu Wang,Jichuan Zhang,Yineng Zheng,Fajin Lv
出处
期刊:European Journal of Radiology [Elsevier]
卷期号:177: 111556-111556 被引量:4
标识
DOI:10.1016/j.ejrad.2024.111556
摘要

Purpose To conduct the fusion of radiomics and deep transfer learning features from the intratumoral and peritumoral areas in breast DCE-MRI images to differentiate between benign and malignant breast tumors, and to compare the diagnostic accuracy of this fusion model against the assessments made by experienced radiologists. Materials and Methods This multi-center study conducted a retrospective analysis of DCE-MRI images from 330 women diagnosed with breast cancer, with 138 cases categorized as benign and 192 as malignant. The training and internal testing sets comprised 270 patients from center 1, while the external testing cohort consisted of 60 patients from center 2. A fusion feature set consisting of radiomics features and deep transfer learning features was constructed from both intratumoral (ITR) and peritumoral (PTR) areas. The Least absolute shrinkage and selection operator (LASSO) based support vector machine was chosen as the classifier by comparing its performance with five other machine learning models. The diagnostic performance and clinical usefulness of fusion model were verified and assessed through the area under the receiver operating characteristics (ROC) and decision curve analysis. Additionally, the performance of the fusion model was compared with the diagnostic assessments of two experienced radiologists to evaluate its relative accuracy. The study strictly adhered to CLEAR and METRICS guidelines for standardization to ensure rigorous and reproducible methods. Results The findings show that the fusion model, utilizing radiomics and deep transfer learning features from the ITR and PTR, exhibited exceptional performance in classifying breast tumors, achieving AUCs of 0.950 in the internal testing set and 0.921 in the external testing set. This performance significantly surpasses that of models relying on singular regional radiomics or deep transfer learning features alone. Moreover, the fusion model demonstrated superior diagnostic accuracy compared to the evaluations conducted by two experienced radiologists, thereby highlighting its potential to support and enhance clinical decision-making in the differentiation of benign and malignant breast tumors. Conclusion The fusion model, combining multi-regional radiomics with deep transfer learning features, not only accurately differentiates between benign and malignant breast tumors but also outperforms the diagnostic assessments made by experienced radiologists. This underscores the model's potential as a valuable tool for improving the accuracy and reliability of breast tumor diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
mingxwang关注了科研通微信公众号
刚刚
许起眸完成签到,获得积分10
刚刚
1秒前
黄夏天的猫完成签到,获得积分10
1秒前
1秒前
1秒前
1秒前
2秒前
量子星尘发布了新的文献求助10
3秒前
ions完成签到,获得积分10
3秒前
自由的铃铛完成签到,获得积分20
4秒前
needTao完成签到,获得积分10
4秒前
123456hhh发布了新的文献求助30
4秒前
木又权发布了新的文献求助10
4秒前
zhaizhai完成签到,获得积分10
5秒前
wxr发布了新的文献求助10
5秒前
peiqi佩奇发布了新的文献求助10
6秒前
淡淡碧玉发布了新的文献求助10
6秒前
6秒前
6秒前
nnn发布了新的文献求助10
6秒前
xyx完成签到,获得积分10
7秒前
闪闪落雁完成签到,获得积分10
7秒前
寻道图强应助ovo采纳,获得60
8秒前
脑洞疼应助LooQueSiento采纳,获得10
8秒前
可爱鸡翅完成签到,获得积分10
8秒前
8秒前
李健应助JTHan采纳,获得10
8秒前
思源应助谨慎的易蓉采纳,获得10
8秒前
SciGPT应助加百莉采纳,获得10
8秒前
cbb完成签到 ,获得积分10
8秒前
Sarah完成签到 ,获得积分10
9秒前
科研通AI6应助Tanxaio采纳,获得10
9秒前
搜集达人应助fddd采纳,获得10
9秒前
zzy完成签到,获得积分10
9秒前
DONGmumu完成签到,获得积分10
9秒前
10秒前
XTT完成签到,获得积分10
11秒前
超级大饼完成签到,获得积分10
11秒前
酷波er应助peiqi佩奇采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
Using Genomics to Understand How Invaders May Adapt: A Marine Perspective 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5505274
求助须知:如何正确求助?哪些是违规求助? 4600815
关于积分的说明 14474557
捐赠科研通 4534974
什么是DOI,文献DOI怎么找? 2485092
邀请新用户注册赠送积分活动 1468177
关于科研通互助平台的介绍 1440669