Integrating intratumoral and peritumoral radiomics with deep transfer learning for DCE-MRI breast lesion differentiation: A multicenter study comparing performance with radiologists

医学 无线电技术 放射科 乳房磁振造影 乳房成像 磁共振成像 乳腺肿瘤 多中心研究 乳腺癌 病理 乳腺摄影术 内科学 癌症 随机对照试验
作者
Tao Yu,Renqiang Yu,Mengqi Liu,Xinyu Wang,Jichuan Zhang,Yineng Zheng,Fajin Lv
出处
期刊:European Journal of Radiology [Elsevier BV]
卷期号:177: 111556-111556 被引量:4
标识
DOI:10.1016/j.ejrad.2024.111556
摘要

Purpose To conduct the fusion of radiomics and deep transfer learning features from the intratumoral and peritumoral areas in breast DCE-MRI images to differentiate between benign and malignant breast tumors, and to compare the diagnostic accuracy of this fusion model against the assessments made by experienced radiologists. Materials and Methods This multi-center study conducted a retrospective analysis of DCE-MRI images from 330 women diagnosed with breast cancer, with 138 cases categorized as benign and 192 as malignant. The training and internal testing sets comprised 270 patients from center 1, while the external testing cohort consisted of 60 patients from center 2. A fusion feature set consisting of radiomics features and deep transfer learning features was constructed from both intratumoral (ITR) and peritumoral (PTR) areas. The Least absolute shrinkage and selection operator (LASSO) based support vector machine was chosen as the classifier by comparing its performance with five other machine learning models. The diagnostic performance and clinical usefulness of fusion model were verified and assessed through the area under the receiver operating characteristics (ROC) and decision curve analysis. Additionally, the performance of the fusion model was compared with the diagnostic assessments of two experienced radiologists to evaluate its relative accuracy. The study strictly adhered to CLEAR and METRICS guidelines for standardization to ensure rigorous and reproducible methods. Results The findings show that the fusion model, utilizing radiomics and deep transfer learning features from the ITR and PTR, exhibited exceptional performance in classifying breast tumors, achieving AUCs of 0.950 in the internal testing set and 0.921 in the external testing set. This performance significantly surpasses that of models relying on singular regional radiomics or deep transfer learning features alone. Moreover, the fusion model demonstrated superior diagnostic accuracy compared to the evaluations conducted by two experienced radiologists, thereby highlighting its potential to support and enhance clinical decision-making in the differentiation of benign and malignant breast tumors. Conclusion The fusion model, combining multi-regional radiomics with deep transfer learning features, not only accurately differentiates between benign and malignant breast tumors but also outperforms the diagnostic assessments made by experienced radiologists. This underscores the model's potential as a valuable tool for improving the accuracy and reliability of breast tumor diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SciGPT应助David采纳,获得10
刚刚
maomao完成签到,获得积分20
刚刚
从容傲柏完成签到,获得积分10
1秒前
马前人发布了新的文献求助10
2秒前
李健应助77采纳,获得10
2秒前
pluto应助小喜采纳,获得10
2秒前
郭勇慧完成签到,获得积分10
3秒前
木刻青、完成签到,获得积分10
4秒前
无花果应助科研通管家采纳,获得10
4秒前
星辰大海应助快乐小子采纳,获得10
4秒前
所所应助zwy109采纳,获得10
6秒前
Yina完成签到 ,获得积分10
7秒前
小药丸完成签到,获得积分10
8秒前
蓝天阳光完成签到,获得积分10
9秒前
王锦鹏完成签到,获得积分20
9秒前
结实的丹雪完成签到,获得积分10
9秒前
Amon完成签到,获得积分10
10秒前
Betaremains完成签到,获得积分10
10秒前
汉堡包应助yy采纳,获得10
11秒前
11秒前
小梁今天也要努力呀完成签到 ,获得积分10
12秒前
辛未完成签到 ,获得积分10
13秒前
bbihk完成签到,获得积分10
13秒前
或无情完成签到 ,获得积分10
14秒前
快乐小子完成签到,获得积分10
14秒前
14秒前
15秒前
研友_nPxRRn完成签到,获得积分10
16秒前
莽哥完成签到,获得积分10
16秒前
快乐小子发布了新的文献求助10
16秒前
哇哇哇哇我完成签到,获得积分10
17秒前
星星完成签到 ,获得积分10
17秒前
小龙完成签到,获得积分10
18秒前
龙叶静完成签到 ,获得积分10
19秒前
巧克力手印完成签到,获得积分10
19秒前
小高同学完成签到,获得积分10
20秒前
单薄含巧发布了新的文献求助10
20秒前
xrkxrk完成签到 ,获得积分0
20秒前
科研通AI6应助maomao采纳,获得10
22秒前
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4570792
求助须知:如何正确求助?哪些是违规求助? 3992220
关于积分的说明 12357045
捐赠科研通 3664985
什么是DOI,文献DOI怎么找? 2019844
邀请新用户注册赠送积分活动 1054261
科研通“疑难数据库(出版商)”最低求助积分说明 941818