亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Integrating intratumoral and peritumoral radiomics with deep transfer learning for DCE-MRI breast lesion differentiation: A multicenter study comparing performance with radiologists

医学 无线电技术 放射科 乳房磁振造影 乳房成像 磁共振成像 乳腺肿瘤 多中心研究 乳腺癌 病理 乳腺摄影术 内科学 癌症 随机对照试验
作者
Tao Yu,Renqiang Yu,Mengqi Liu,Xinyu Wang,Jichuan Zhang,Yineng Zheng,Fajin Lv
出处
期刊:European Journal of Radiology [Elsevier]
卷期号:177: 111556-111556 被引量:4
标识
DOI:10.1016/j.ejrad.2024.111556
摘要

Purpose To conduct the fusion of radiomics and deep transfer learning features from the intratumoral and peritumoral areas in breast DCE-MRI images to differentiate between benign and malignant breast tumors, and to compare the diagnostic accuracy of this fusion model against the assessments made by experienced radiologists. Materials and Methods This multi-center study conducted a retrospective analysis of DCE-MRI images from 330 women diagnosed with breast cancer, with 138 cases categorized as benign and 192 as malignant. The training and internal testing sets comprised 270 patients from center 1, while the external testing cohort consisted of 60 patients from center 2. A fusion feature set consisting of radiomics features and deep transfer learning features was constructed from both intratumoral (ITR) and peritumoral (PTR) areas. The Least absolute shrinkage and selection operator (LASSO) based support vector machine was chosen as the classifier by comparing its performance with five other machine learning models. The diagnostic performance and clinical usefulness of fusion model were verified and assessed through the area under the receiver operating characteristics (ROC) and decision curve analysis. Additionally, the performance of the fusion model was compared with the diagnostic assessments of two experienced radiologists to evaluate its relative accuracy. The study strictly adhered to CLEAR and METRICS guidelines for standardization to ensure rigorous and reproducible methods. Results The findings show that the fusion model, utilizing radiomics and deep transfer learning features from the ITR and PTR, exhibited exceptional performance in classifying breast tumors, achieving AUCs of 0.950 in the internal testing set and 0.921 in the external testing set. This performance significantly surpasses that of models relying on singular regional radiomics or deep transfer learning features alone. Moreover, the fusion model demonstrated superior diagnostic accuracy compared to the evaluations conducted by two experienced radiologists, thereby highlighting its potential to support and enhance clinical decision-making in the differentiation of benign and malignant breast tumors. Conclusion The fusion model, combining multi-regional radiomics with deep transfer learning features, not only accurately differentiates between benign and malignant breast tumors but also outperforms the diagnostic assessments made by experienced radiologists. This underscores the model's potential as a valuable tool for improving the accuracy and reliability of breast tumor diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lyncee发布了新的文献求助50
2秒前
doc.wei发布了新的文献求助10
3秒前
JamesPei应助张123采纳,获得30
4秒前
13秒前
张123完成签到,获得积分20
14秒前
张123发布了新的文献求助30
18秒前
CodeCraft应助catherine采纳,获得10
22秒前
31秒前
34秒前
李健的小迷弟应助余婷采纳,获得10
34秒前
34秒前
等待若山发布了新的文献求助10
35秒前
doc.wei完成签到 ,获得积分20
39秒前
waomi发布了新的文献求助10
41秒前
CipherSage应助咕噜咕噜采纳,获得30
44秒前
小奋青完成签到 ,获得积分10
45秒前
46秒前
余婷发布了新的文献求助10
52秒前
1分钟前
catherine发布了新的文献求助10
1分钟前
田様应助杨柳9203采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
shhoing应助科研通管家采纳,获得10
1分钟前
shhoing应助科研通管家采纳,获得10
1分钟前
1分钟前
苹果小玉发布了新的文献求助10
1分钟前
2分钟前
fan发布了新的文献求助30
2分钟前
2分钟前
杨柳9203发布了新的文献求助10
2分钟前
2分钟前
2分钟前
bu拿下PHD绝不回头完成签到,获得积分10
2分钟前
3分钟前
3分钟前
李静完成签到,获得积分10
3分钟前
3分钟前
YY88687321发布了新的文献求助10
3分钟前
3分钟前
科研通AI2S应助xiaoguoxiaoguo采纳,获得10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5543167
求助须知:如何正确求助?哪些是违规求助? 4629339
关于积分的说明 14611117
捐赠科研通 4570598
什么是DOI,文献DOI怎么找? 2505827
邀请新用户注册赠送积分活动 1483084
关于科研通互助平台的介绍 1454407