Integrating intratumoral and peritumoral radiomics with deep transfer learning for DCE-MRI breast lesion differentiation: A multicenter study comparing performance with radiologists

医学 无线电技术 放射科 乳房磁振造影 乳房成像 磁共振成像 乳腺肿瘤 多中心研究 乳腺癌 病理 乳腺摄影术 内科学 癌症 随机对照试验
作者
Tao Yu,Renqiang Yu,Mengqi Liu,Xinyu Wang,Jichuan Zhang,Yineng Zheng,Fajin Lv
出处
期刊:European Journal of Radiology [Elsevier]
卷期号:177: 111556-111556 被引量:2
标识
DOI:10.1016/j.ejrad.2024.111556
摘要

Purpose To conduct the fusion of radiomics and deep transfer learning features from the intratumoral and peritumoral areas in breast DCE-MRI images to differentiate between benign and malignant breast tumors, and to compare the diagnostic accuracy of this fusion model against the assessments made by experienced radiologists. Materials and Methods This multi-center study conducted a retrospective analysis of DCE-MRI images from 330 women diagnosed with breast cancer, with 138 cases categorized as benign and 192 as malignant. The training and internal testing sets comprised 270 patients from center 1, while the external testing cohort consisted of 60 patients from center 2. A fusion feature set consisting of radiomics features and deep transfer learning features was constructed from both intratumoral (ITR) and peritumoral (PTR) areas. The Least absolute shrinkage and selection operator (LASSO) based support vector machine was chosen as the classifier by comparing its performance with five other machine learning models. The diagnostic performance and clinical usefulness of fusion model were verified and assessed through the area under the receiver operating characteristics (ROC) and decision curve analysis. Additionally, the performance of the fusion model was compared with the diagnostic assessments of two experienced radiologists to evaluate its relative accuracy. The study strictly adhered to CLEAR and METRICS guidelines for standardization to ensure rigorous and reproducible methods. Results The findings show that the fusion model, utilizing radiomics and deep transfer learning features from the ITR and PTR, exhibited exceptional performance in classifying breast tumors, achieving AUCs of 0.950 in the internal testing set and 0.921 in the external testing set. This performance significantly surpasses that of models relying on singular regional radiomics or deep transfer learning features alone. Moreover, the fusion model demonstrated superior diagnostic accuracy compared to the evaluations conducted by two experienced radiologists, thereby highlighting its potential to support and enhance clinical decision-making in the differentiation of benign and malignant breast tumors. Conclusion The fusion model, combining multi-regional radiomics with deep transfer learning features, not only accurately differentiates between benign and malignant breast tumors but also outperforms the diagnostic assessments made by experienced radiologists. This underscores the model's potential as a valuable tool for improving the accuracy and reliability of breast tumor diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
在水一方应助涛涛采纳,获得10
刚刚
英姑应助义气的傲松采纳,获得10
1秒前
1秒前
哭泣蛋挞完成签到 ,获得积分10
2秒前
sweetbearm应助通~采纳,获得10
2秒前
田様应助吃饭用大碗采纳,获得10
3秒前
3秒前
4秒前
5秒前
阿斯蒂和琴酒完成签到 ,获得积分10
5秒前
珂珂发布了新的文献求助10
7秒前
7秒前
迟大猫应助我是站长才怪采纳,获得30
7秒前
8秒前
BaekHyun发布了新的文献求助10
8秒前
背后翠梅发布了新的文献求助30
8秒前
CCR发布了新的文献求助10
8秒前
su发布了新的文献求助10
10秒前
善学以致用应助钰c采纳,获得10
10秒前
Fundamental完成签到,获得积分20
11秒前
通~发布了新的文献求助10
11秒前
Akim应助阿屁屁猪采纳,获得10
11秒前
12秒前
细雨听风发布了新的文献求助10
12秒前
12秒前
英俊的小松鼠完成签到,获得积分10
12秒前
13秒前
15秒前
cc完成签到,获得积分20
15秒前
16秒前
16秒前
背后翠梅完成签到,获得积分10
16秒前
16秒前
涛涛发布了新的文献求助10
16秒前
lan完成签到,获得积分10
16秒前
皮皮完成签到 ,获得积分10
17秒前
ChiDaiOLD完成签到,获得积分10
17秒前
17秒前
情怀应助顺顺采纳,获得10
17秒前
Fundamental发布了新的文献求助10
19秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808