Integrating intratumoral and peritumoral radiomics with deep transfer learning for DCE-MRI breast lesion differentiation: A multicenter study comparing performance with radiologists

医学 无线电技术 放射科 乳房磁振造影 乳房成像 磁共振成像 乳腺肿瘤 多中心研究 乳腺癌 病理 乳腺摄影术 内科学 癌症 随机对照试验
作者
Tao Yu,Renqiang Yu,Mengqi Liu,Xinyu Wang,Jichuan Zhang,Yineng Zheng,Fajin Lv
出处
期刊:European Journal of Radiology [Elsevier]
卷期号:177: 111556-111556
标识
DOI:10.1016/j.ejrad.2024.111556
摘要

Purpose To conduct the fusion of radiomics and deep transfer learning features from the intratumoral and peritumoral areas in breast DCE-MRI images to differentiate between benign and malignant breast tumors, and to compare the diagnostic accuracy of this fusion model against the assessments made by experienced radiologists. Materials and Methods This multi-center study conducted a retrospective analysis of DCE-MRI images from 330 women diagnosed with breast cancer, with 138 cases categorized as benign and 192 as malignant. The training and internal testing sets comprised 270 patients from center 1, while the external testing cohort consisted of 60 patients from center 2. A fusion feature set consisting of radiomics features and deep transfer learning features was constructed from both intratumoral (ITR) and peritumoral (PTR) areas. The Least absolute shrinkage and selection operator (LASSO) based support vector machine was chosen as the classifier by comparing its performance with five other machine learning models. The diagnostic performance and clinical usefulness of fusion model were verified and assessed through the area under the receiver operating characteristics (ROC) and decision curve analysis. Additionally, the performance of the fusion model was compared with the diagnostic assessments of two experienced radiologists to evaluate its relative accuracy. The study strictly adhered to CLEAR and METRICS guidelines for standardization to ensure rigorous and reproducible methods. Results The findings show that the fusion model, utilizing radiomics and deep transfer learning features from the ITR and PTR, exhibited exceptional performance in classifying breast tumors, achieving AUCs of 0.950 in the internal testing set and 0.921 in the external testing set. This performance significantly surpasses that of models relying on singular regional radiomics or deep transfer learning features alone. Moreover, the fusion model demonstrated superior diagnostic accuracy compared to the evaluations conducted by two experienced radiologists, thereby highlighting its potential to support and enhance clinical decision-making in the differentiation of benign and malignant breast tumors. Conclusion The fusion model, combining multi-regional radiomics with deep transfer learning features, not only accurately differentiates between benign and malignant breast tumors but also outperforms the diagnostic assessments made by experienced radiologists. This underscores the model's potential as a valuable tool for improving the accuracy and reliability of breast tumor diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
研友_VZG7GZ应助Allonz采纳,获得10
刚刚
刚刚
Garfield完成签到 ,获得积分10
1秒前
orixero应助momo采纳,获得10
1秒前
叶瑾完成签到,获得积分10
2秒前
Katsura发布了新的文献求助10
3秒前
wy完成签到,获得积分10
3秒前
五五完成签到,获得积分20
3秒前
3秒前
5秒前
烟花应助天妒嘤才采纳,获得10
5秒前
CodeCraft应助7777135采纳,获得10
6秒前
6秒前
完美世界应助Jeffery采纳,获得30
7秒前
我是老大应助哭泣老三采纳,获得10
8秒前
NexusExplorer应助槑槑采纳,获得10
9秒前
猜fing发布了新的文献求助10
9秒前
9秒前
10秒前
10秒前
10秒前
烟花应助称心语风采纳,获得10
13秒前
为什么不学习完成签到,获得积分10
14秒前
李健的小迷弟应助Wander_Li采纳,获得10
14秒前
月月鸟发布了新的文献求助10
14秒前
14秒前
五五发布了新的文献求助10
14秒前
彭于晏应助fleee采纳,获得10
15秒前
KYRIAL发布了新的文献求助10
15秒前
小蘑菇应助WNL采纳,获得10
15秒前
蓝色风筝发布了新的文献求助10
16秒前
哎嘤斯坦发布了新的文献求助10
17秒前
17秒前
二三完成签到,获得积分20
18秒前
无聊完成签到,获得积分10
19秒前
19秒前
哭泣老三发布了新的文献求助10
19秒前
21秒前
23秒前
高分求助中
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
宽禁带半导体紫外光电探测器 300
Case Research: The Case Writing Process 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3141967
求助须知:如何正确求助?哪些是违规求助? 2792975
关于积分的说明 7804827
捐赠科研通 2449305
什么是DOI,文献DOI怎么找? 1303150
科研通“疑难数据库(出版商)”最低求助积分说明 626807
版权声明 601291