Integrating intratumoral and peritumoral radiomics with deep transfer learning for DCE-MRI breast lesion differentiation: A multicenter study comparing performance with radiologists

医学 无线电技术 放射科 乳房磁振造影 乳房成像 磁共振成像 乳腺肿瘤 多中心研究 乳腺癌 病理 乳腺摄影术 内科学 癌症 随机对照试验
作者
Tao Yu,Renqiang Yu,Mengqi Liu,Xinyu Wang,Jichuan Zhang,Yineng Zheng,Fajin Lv
出处
期刊:European Journal of Radiology [Elsevier BV]
卷期号:177: 111556-111556 被引量:4
标识
DOI:10.1016/j.ejrad.2024.111556
摘要

Purpose To conduct the fusion of radiomics and deep transfer learning features from the intratumoral and peritumoral areas in breast DCE-MRI images to differentiate between benign and malignant breast tumors, and to compare the diagnostic accuracy of this fusion model against the assessments made by experienced radiologists. Materials and Methods This multi-center study conducted a retrospective analysis of DCE-MRI images from 330 women diagnosed with breast cancer, with 138 cases categorized as benign and 192 as malignant. The training and internal testing sets comprised 270 patients from center 1, while the external testing cohort consisted of 60 patients from center 2. A fusion feature set consisting of radiomics features and deep transfer learning features was constructed from both intratumoral (ITR) and peritumoral (PTR) areas. The Least absolute shrinkage and selection operator (LASSO) based support vector machine was chosen as the classifier by comparing its performance with five other machine learning models. The diagnostic performance and clinical usefulness of fusion model were verified and assessed through the area under the receiver operating characteristics (ROC) and decision curve analysis. Additionally, the performance of the fusion model was compared with the diagnostic assessments of two experienced radiologists to evaluate its relative accuracy. The study strictly adhered to CLEAR and METRICS guidelines for standardization to ensure rigorous and reproducible methods. Results The findings show that the fusion model, utilizing radiomics and deep transfer learning features from the ITR and PTR, exhibited exceptional performance in classifying breast tumors, achieving AUCs of 0.950 in the internal testing set and 0.921 in the external testing set. This performance significantly surpasses that of models relying on singular regional radiomics or deep transfer learning features alone. Moreover, the fusion model demonstrated superior diagnostic accuracy compared to the evaluations conducted by two experienced radiologists, thereby highlighting its potential to support and enhance clinical decision-making in the differentiation of benign and malignant breast tumors. Conclusion The fusion model, combining multi-regional radiomics with deep transfer learning features, not only accurately differentiates between benign and malignant breast tumors but also outperforms the diagnostic assessments made by experienced radiologists. This underscores the model's potential as a valuable tool for improving the accuracy and reliability of breast tumor diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
常常完成签到,获得积分10
1秒前
笑哈哈完成签到,获得积分10
2秒前
2秒前
Need_Knowledge完成签到,获得积分10
3秒前
欢呼问旋完成签到,获得积分10
4秒前
5秒前
隐形曼青应助陈陈采纳,获得10
6秒前
研友_VZG7GZ应助Need_Knowledge采纳,获得10
6秒前
sihui完成签到,获得积分10
6秒前
搜集达人应助啊巴拉采纳,获得10
7秒前
Aaron完成签到,获得积分10
8秒前
Shacoooo发布了新的文献求助10
8秒前
小毛线完成签到,获得积分10
9秒前
9秒前
Ricky发布了新的文献求助10
10秒前
铭心发布了新的文献求助10
11秒前
李雨珍完成签到,获得积分10
11秒前
13秒前
13秒前
13秒前
15秒前
汽水味发布了新的文献求助10
16秒前
Aaron发布了新的文献求助10
16秒前
陈陈发布了新的文献求助10
18秒前
19秒前
轩轩发布了新的文献求助10
19秒前
liden发布了新的文献求助10
22秒前
NexusExplorer应助轩轩采纳,获得10
23秒前
SCIfafafafa发布了新的文献求助10
24秒前
桐桐应助科研通管家采纳,获得10
25秒前
SciGPT应助科研通管家采纳,获得10
25秒前
地表飞猪应助科研通管家采纳,获得10
25秒前
wanci应助科研通管家采纳,获得10
25秒前
25秒前
Lucas应助科研通管家采纳,获得10
25秒前
25秒前
25秒前
深情安青应助科研通管家采纳,获得10
25秒前
27秒前
helitrope完成签到,获得积分10
27秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967131
求助须知:如何正确求助?哪些是违规求助? 3512470
关于积分的说明 11163384
捐赠科研通 3247378
什么是DOI,文献DOI怎么找? 1793799
邀请新用户注册赠送积分活动 874615
科研通“疑难数据库(出版商)”最低求助积分说明 804450