Eye-body Coordination during Daily Activities for Gaze Prediction from Full-body Poses

计算机科学 凝视 眼-手协调 人机交互 计算机视觉 人工智能 眼动 可视化
作者
Zhiming Hu,Jiahui Xu,Syn Schmitt,Andreas Bulling
出处
期刊:IEEE Transactions on Visualization and Computer Graphics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-12
标识
DOI:10.1109/tvcg.2024.3412190
摘要

Human eye gaze plays a significant role in many virtual and augmented reality (VR/AR) applications, such as gaze-contingent rendering, gaze-based interaction, or eye-based activity recognition. However, prior works on gaze analysis and prediction have only explored eye-head coordination and were limited to human-object interactions. We first report a comprehensive analysis of eye-body coordination in various human-object and human-human interaction activities based on four public datasets collected in real-world (MoGaze), VR (ADT), as well as AR (GIMO and EgoBody) environments. We show that in human-object interactions, e.g. pick and place, eye gaze exhibits strong correlations with full-body motion while in human-human interactions, e.g. chat and teach, a person's gaze direction is correlated with the body orientation towards the interaction partner. Informed by these analyses we then present Pose2Gaze - a novel eye-body coordination model that uses a convolutional neural network and a spatio-temporal graph convolutional neural network to extract features from head direction and full-body poses, respectively, and then uses a convolutional neural network to predict eye gaze. We compare our method with state-of-the-art methods that predict eye gaze only from head movements and show that Pose2Gaze outperforms these baselines with an average improvement of 24.0% on MoGaze, 10.1% on ADT, 21.3% on GIMO, and 28.6% on EgoBody in mean angular error, respectively. We also show that our method significantly outperforms prior methods in the sample downstream task of eye-based activity recognition. These results underline the significant information content available in eye-body coordination during daily activities and open up a new direction for gaze prediction.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ziwei完成签到 ,获得积分10
1秒前
小二郎应助wangshibing采纳,获得10
1秒前
1秒前
锅嘚硬完成签到,获得积分20
1秒前
1秒前
bb完成签到,获得积分10
1秒前
搬砖民工完成签到,获得积分10
1秒前
吞吞完成签到 ,获得积分10
1秒前
2秒前
2秒前
直率白羊发布了新的文献求助10
2秒前
忍冬发布了新的文献求助10
2秒前
2秒前
Starain完成签到,获得积分10
2秒前
科研废物完成签到 ,获得积分10
2秒前
windmelody完成签到,获得积分10
2秒前
枫落发布了新的文献求助10
2秒前
yuan完成签到,获得积分10
3秒前
xlz完成签到,获得积分10
3秒前
cloud完成签到,获得积分10
3秒前
旺旺完成签到,获得积分10
3秒前
lilianan完成签到,获得积分20
4秒前
4秒前
飘逸山兰完成签到,获得积分10
4秒前
万能图书馆应助FJLSDNMV采纳,获得10
5秒前
Future发布了新的文献求助10
5秒前
grm发布了新的文献求助10
6秒前
6秒前
6秒前
6秒前
6秒前
小火车EL完成签到,获得积分10
7秒前
领导范儿应助碧蓝靳采纳,获得10
7秒前
Jasmine发布了新的文献求助10
7秒前
Panchael完成签到,获得积分10
7秒前
pearlwh1227发布了新的文献求助10
7秒前
在一完成签到,获得积分10
8秒前
和谐爆米花完成签到,获得积分20
9秒前
zhen发布了新的文献求助10
9秒前
旺旺发布了新的文献求助10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5665717
求助须知:如何正确求助?哪些是违规求助? 4877979
关于积分的说明 15115220
捐赠科研通 4824955
什么是DOI,文献DOI怎么找? 2582994
邀请新用户注册赠送积分活动 1537014
关于科研通互助平台的介绍 1495441