Eye-body Coordination during Daily Activities for Gaze Prediction from Full-body Poses

计算机科学 凝视 眼-手协调 人机交互 计算机视觉 人工智能 眼动 可视化
作者
Zhiming Hu,Jiahui Xu,Syn Schmitt,Andreas Bulling
出处
期刊:IEEE Transactions on Visualization and Computer Graphics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-12
标识
DOI:10.1109/tvcg.2024.3412190
摘要

Human eye gaze plays a significant role in many virtual and augmented reality (VR/AR) applications, such as gaze-contingent rendering, gaze-based interaction, or eye-based activity recognition. However, prior works on gaze analysis and prediction have only explored eye-head coordination and were limited to human-object interactions. We first report a comprehensive analysis of eye-body coordination in various human-object and human-human interaction activities based on four public datasets collected in real-world (MoGaze), VR (ADT), as well as AR (GIMO and EgoBody) environments. We show that in human-object interactions, e.g. pick and place, eye gaze exhibits strong correlations with full-body motion while in human-human interactions, e.g. chat and teach, a person's gaze direction is correlated with the body orientation towards the interaction partner. Informed by these analyses we then present Pose2Gaze - a novel eye-body coordination model that uses a convolutional neural network and a spatio-temporal graph convolutional neural network to extract features from head direction and full-body poses, respectively, and then uses a convolutional neural network to predict eye gaze. We compare our method with state-of-the-art methods that predict eye gaze only from head movements and show that Pose2Gaze outperforms these baselines with an average improvement of 24.0% on MoGaze, 10.1% on ADT, 21.3% on GIMO, and 28.6% on EgoBody in mean angular error, respectively. We also show that our method significantly outperforms prior methods in the sample downstream task of eye-based activity recognition. These results underline the significant information content available in eye-body coordination during daily activities and open up a new direction for gaze prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
TWT完成签到,获得积分10
1秒前
四火yi发布了新的文献求助10
2秒前
平常水卉发布了新的文献求助10
2秒前
火星上草丛完成签到,获得积分10
5秒前
6秒前
白杨木影子被拉长完成签到,获得积分10
6秒前
Hello应助薯薯鼠鼠采纳,获得10
6秒前
爆米花应助雪山飞龙采纳,获得30
7秒前
8秒前
8秒前
浮生若梦完成签到,获得积分10
9秒前
10秒前
11秒前
11秒前
邢文瑞发布了新的文献求助10
12秒前
13秒前
王大壮完成签到,获得积分10
14秒前
14秒前
彭于晏应助四火yi采纳,获得10
15秒前
15秒前
16秒前
18秒前
19秒前
乔治完成签到,获得积分10
20秒前
彭于晏应助Summer采纳,获得10
20秒前
王晓宇完成签到,获得积分10
20秒前
20秒前
尼可刹米洛贝林完成签到,获得积分10
21秒前
大胆的夏天完成签到,获得积分10
21秒前
21秒前
21秒前
21秒前
eric888应助PAD采纳,获得200
23秒前
雪山飞龙发布了新的文献求助30
24秒前
首席医官完成签到,获得积分10
25秒前
乐多发布了新的文献求助10
25秒前
miyun完成签到,获得积分10
26秒前
四火yi完成签到,获得积分10
27秒前
qyh完成签到,获得积分10
27秒前
27秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962866
求助须知:如何正确求助?哪些是违规求助? 3508787
关于积分的说明 11143177
捐赠科研通 3241660
什么是DOI,文献DOI怎么找? 1791651
邀请新用户注册赠送积分活动 873020
科研通“疑难数据库(出版商)”最低求助积分说明 803577