Construction and validation of a clinical differentiation model between peripheral lung cancer and solitary pulmonary tuberculosis

逻辑回归 列线图 接收机工作特性 医学 单变量 肺癌 肺结核 人工智能 统计 内科学 机器学习 多元统计 数学 计算机科学 病理
作者
Xukun Gao,Huaqing Tan,Mengdie Zhu,Guojin Zhang,Yuntai Cao
出处
期刊:Lung Cancer [Elsevier]
卷期号:193: 107851-107851
标识
DOI:10.1016/j.lungcan.2024.107851
摘要

Objective To establish and validate a clinical model for differentiating peripheral lung cancer (PLC) from solitary pulmonary tuberculosis (SP-TB) based on clinical and imaging features. Materials and methods Retrospectively, 183 patients (100 PLC, 83 SP-TB) in our hospital were randomly divided into a training group and an internal validation group (ratio 7:3), and 100 patients (50 PLC, 50 SP-TB) in Sichuan Provincial People's Hospital were identified as an external validation group. The collected qualitative and quantitative variables were used to determine the independent feature variables for distinguishing between PLC and SP-TB through univariate logistic regression, multivariate logistic regression. Then, traditional logistic regression models and machine learning algorithm models (decision tree, random forest, xgboost, support vector machine, k-nearest neighbors, light gradient boosting machine) were established using the independent feature variables. The model with the highest AUC value in the internal validation group was used for subsequent analysis. The receiver operating characteristic curve (ROC), calibration curve, and decision curves analysis (DCA) were used to assess the model's discrimination, calibration, and clinical usefulness. Result Age, smoking history, maximum diameter of lesion, lobulation, spiculation, calcification, and vascular convergence sign were independent characteristic variables to differentiate PLC from SP-TB. The logistic regression model had the highest AUC value of 0.878 for the internal validation group, based on which a quantitative visualization nomogram was constructed to discriminate the two diseases. The area under the ROC curve (AUC) of the model in the training, internal validation, and external validation groups were 0.915 (95 % CI: 0.866–0.965), 0.878 (95 % CI: 0.784–0.971), and 0.912 (95 % CI: 0.855–0.969), respectively, and the calibration curves fitted well. Decision curves analysis (DCA) confirmed the good clinical benefit of the model. Conclusion The model constructed based on clinical and imaging features can accurately differentiate between PLC and SP-TB, providing potential value for developing reasonable clinical plans.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
澡雪完成签到,获得积分10
7秒前
wangfugui完成签到,获得积分10
7秒前
大个应助青瓜大王采纳,获得10
9秒前
10秒前
11秒前
11秒前
在水一方应助随便采纳,获得10
12秒前
13秒前
14秒前
尽我所能发布了新的文献求助10
14秒前
炫哥IRIS完成签到,获得积分10
16秒前
17秒前
宸一完成签到,获得积分10
17秒前
tzp完成签到,获得积分20
19秒前
beijiu完成签到 ,获得积分10
19秒前
21秒前
伈X发布了新的文献求助10
21秒前
天使小五哥应助wzwz采纳,获得10
22秒前
Meimei发布了新的文献求助50
24秒前
24秒前
Yuxiao关注了科研通微信公众号
25秒前
GXGXGX完成签到,获得积分20
25秒前
realrrr发布了新的文献求助10
27秒前
28秒前
ccCherub完成签到,获得积分10
28秒前
CodeCraft应助石会发采纳,获得10
28秒前
29秒前
随便完成签到,获得积分10
29秒前
30秒前
大个应助GXGXGX采纳,获得10
31秒前
35秒前
十七发布了新的文献求助20
36秒前
sussiczdh完成签到,获得积分10
37秒前
39秒前
39秒前
称心翠容完成签到,获得积分10
39秒前
39秒前
自觉的时光完成签到,获得积分10
40秒前
石会发发布了新的文献求助10
40秒前
小晨完成签到 ,获得积分10
40秒前
高分求助中
Sustainability in ’Tides Chemistry 1500
The ACS Guide to Scholarly Communication 1000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Handbook of the Mammals of the World – Volume 3: Primates 805
Ethnicities: Media, Health, and Coping 800
Historia de la ciencia jurídica europea 600
Gerard de Lairesse : an artist between stage and studio 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3069575
求助须知:如何正确求助?哪些是违规求助? 2723483
关于积分的说明 7481948
捐赠科研通 2370550
什么是DOI,文献DOI怎么找? 1257057
科研通“疑难数据库(出版商)”最低求助积分说明 609800
版权声明 596861