亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Construction and validation of a clinical differentiation model between peripheral lung cancer and solitary pulmonary tuberculosis

逻辑回归 列线图 接收机工作特性 医学 单变量 肺癌 肺结核 人工智能 统计 内科学 机器学习 多元统计 数学 计算机科学 病理
作者
Xukun Gao,Huaqing Tan,Mengdie Zhu,Guojin Zhang,Yuntai Cao
出处
期刊:Lung Cancer [Elsevier BV]
卷期号:193: 107851-107851 被引量:1
标识
DOI:10.1016/j.lungcan.2024.107851
摘要

Objective To establish and validate a clinical model for differentiating peripheral lung cancer (PLC) from solitary pulmonary tuberculosis (SP-TB) based on clinical and imaging features. Materials and methods Retrospectively, 183 patients (100 PLC, 83 SP-TB) in our hospital were randomly divided into a training group and an internal validation group (ratio 7:3), and 100 patients (50 PLC, 50 SP-TB) in Sichuan Provincial People's Hospital were identified as an external validation group. The collected qualitative and quantitative variables were used to determine the independent feature variables for distinguishing between PLC and SP-TB through univariate logistic regression, multivariate logistic regression. Then, traditional logistic regression models and machine learning algorithm models (decision tree, random forest, xgboost, support vector machine, k-nearest neighbors, light gradient boosting machine) were established using the independent feature variables. The model with the highest AUC value in the internal validation group was used for subsequent analysis. The receiver operating characteristic curve (ROC), calibration curve, and decision curves analysis (DCA) were used to assess the model's discrimination, calibration, and clinical usefulness. Result Age, smoking history, maximum diameter of lesion, lobulation, spiculation, calcification, and vascular convergence sign were independent characteristic variables to differentiate PLC from SP-TB. The logistic regression model had the highest AUC value of 0.878 for the internal validation group, based on which a quantitative visualization nomogram was constructed to discriminate the two diseases. The area under the ROC curve (AUC) of the model in the training, internal validation, and external validation groups were 0.915 (95 % CI: 0.866–0.965), 0.878 (95 % CI: 0.784–0.971), and 0.912 (95 % CI: 0.855–0.969), respectively, and the calibration curves fitted well. Decision curves analysis (DCA) confirmed the good clinical benefit of the model. Conclusion The model constructed based on clinical and imaging features can accurately differentiate between PLC and SP-TB, providing potential value for developing reasonable clinical plans.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5秒前
黑暗炸鸡发布了新的文献求助10
10秒前
mwm完成签到 ,获得积分10
21秒前
深情安青应助黑暗炸鸡采纳,获得10
24秒前
33秒前
大胆的碧菡完成签到,获得积分10
33秒前
Criminology34应助科研通管家采纳,获得10
35秒前
Criminology34应助科研通管家采纳,获得30
35秒前
Akim应助科研通管家采纳,获得10
35秒前
41秒前
48秒前
桐桐应助酷炫的面包采纳,获得10
51秒前
kukudou2发布了新的文献求助10
52秒前
kukudou2完成签到,获得积分10
1分钟前
哈哈哈完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
王绪威发布了新的文献求助10
1分钟前
科研通AI5应助王绪威采纳,获得10
1分钟前
chenlc971125完成签到 ,获得积分10
1分钟前
treat4869完成签到 ,获得积分10
2分钟前
共享精神应助贺喆采纳,获得10
2分钟前
快乐的笑阳完成签到,获得积分10
2分钟前
开心成威完成签到 ,获得积分10
2分钟前
润泽完成签到,获得积分10
3分钟前
戈屿完成签到 ,获得积分10
3分钟前
3分钟前
灵巧嚓茶发布了新的文献求助10
3分钟前
3分钟前
Thanks完成签到 ,获得积分10
3分钟前
Orange应助小冯看不懂采纳,获得10
3分钟前
Nuyoah完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
轻语完成签到 ,获得积分10
4分钟前
冰西瓜完成签到 ,获得积分0
4分钟前
4分钟前
噫吁嚱完成签到 ,获得积分10
4分钟前
Augustines完成签到,获得积分10
4分钟前
4分钟前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
AASHTO LRFD Bridge Design Specifications (10th Edition) with 2025 Errata 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5126912
求助须知:如何正确求助?哪些是违规求助? 4330184
关于积分的说明 13492980
捐赠科研通 4165597
什么是DOI,文献DOI怎么找? 2283452
邀请新用户注册赠送积分活动 1284485
关于科研通互助平台的介绍 1224316