Construction and validation of a clinical differentiation model between peripheral lung cancer and solitary pulmonary tuberculosis

逻辑回归 列线图 接收机工作特性 医学 单变量 肺癌 肺结核 人工智能 统计 内科学 机器学习 多元统计 数学 计算机科学 病理
作者
Xukun Gao,Huaqing Tan,Mengdie Zhu,Guojin Zhang,Yuntai Cao
出处
期刊:Lung Cancer [Elsevier BV]
卷期号:193: 107851-107851 被引量:1
标识
DOI:10.1016/j.lungcan.2024.107851
摘要

Objective To establish and validate a clinical model for differentiating peripheral lung cancer (PLC) from solitary pulmonary tuberculosis (SP-TB) based on clinical and imaging features. Materials and methods Retrospectively, 183 patients (100 PLC, 83 SP-TB) in our hospital were randomly divided into a training group and an internal validation group (ratio 7:3), and 100 patients (50 PLC, 50 SP-TB) in Sichuan Provincial People's Hospital were identified as an external validation group. The collected qualitative and quantitative variables were used to determine the independent feature variables for distinguishing between PLC and SP-TB through univariate logistic regression, multivariate logistic regression. Then, traditional logistic regression models and machine learning algorithm models (decision tree, random forest, xgboost, support vector machine, k-nearest neighbors, light gradient boosting machine) were established using the independent feature variables. The model with the highest AUC value in the internal validation group was used for subsequent analysis. The receiver operating characteristic curve (ROC), calibration curve, and decision curves analysis (DCA) were used to assess the model's discrimination, calibration, and clinical usefulness. Result Age, smoking history, maximum diameter of lesion, lobulation, spiculation, calcification, and vascular convergence sign were independent characteristic variables to differentiate PLC from SP-TB. The logistic regression model had the highest AUC value of 0.878 for the internal validation group, based on which a quantitative visualization nomogram was constructed to discriminate the two diseases. The area under the ROC curve (AUC) of the model in the training, internal validation, and external validation groups were 0.915 (95 % CI: 0.866–0.965), 0.878 (95 % CI: 0.784–0.971), and 0.912 (95 % CI: 0.855–0.969), respectively, and the calibration curves fitted well. Decision curves analysis (DCA) confirmed the good clinical benefit of the model. Conclusion The model constructed based on clinical and imaging features can accurately differentiate between PLC and SP-TB, providing potential value for developing reasonable clinical plans.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
丘比特应助科研通管家采纳,获得10
刚刚
天天快乐应助科研通管家采纳,获得10
刚刚
刚刚
刚刚
1秒前
结实伯云完成签到,获得积分10
5秒前
李健的小迷弟应助Tracy采纳,获得10
6秒前
花花521完成签到,获得积分10
6秒前
7秒前
松鼠15111发布了新的文献求助10
8秒前
lq完成签到,获得积分10
8秒前
10秒前
winjay完成签到,获得积分10
12秒前
13秒前
whisper完成签到,获得积分10
14秒前
15秒前
木南南完成签到,获得积分10
17秒前
完美世界应助海德堡采纳,获得10
19秒前
sbw发布了新的文献求助10
19秒前
ydy3128发布了新的文献求助10
20秒前
21秒前
22秒前
陶贻亮完成签到,获得积分20
23秒前
23秒前
25秒前
28秒前
33秒前
legend完成签到,获得积分10
35秒前
Roche完成签到,获得积分10
37秒前
lerrygg发布了新的文献求助20
37秒前
38秒前
风清扬完成签到,获得积分0
38秒前
39秒前
解语花发布了新的文献求助100
39秒前
40秒前
41秒前
我是老大应助聪慧的怀绿采纳,获得10
42秒前
ydy3128完成签到,获得积分10
42秒前
用头打碟发布了新的文献求助10
43秒前
範範完成签到,获得积分10
43秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967156
求助须知:如何正确求助?哪些是违规求助? 3512491
关于积分的说明 11163601
捐赠科研通 3247421
什么是DOI,文献DOI怎么找? 1793805
邀请新用户注册赠送积分活动 874615
科研通“疑难数据库(出版商)”最低求助积分说明 804468