Construction and validation of a clinical differentiation model between peripheral lung cancer and solitary pulmonary tuberculosis

逻辑回归 列线图 接收机工作特性 医学 单变量 肺癌 肺结核 人工智能 统计 内科学 机器学习 多元统计 数学 计算机科学 病理
作者
Xukun Gao,Huaqing Tan,Mengdie Zhu,Guojin Zhang,Yuntai Cao
出处
期刊:Lung Cancer [Elsevier]
卷期号:193: 107851-107851
标识
DOI:10.1016/j.lungcan.2024.107851
摘要

Objective To establish and validate a clinical model for differentiating peripheral lung cancer (PLC) from solitary pulmonary tuberculosis (SP-TB) based on clinical and imaging features. Materials and methods Retrospectively, 183 patients (100 PLC, 83 SP-TB) in our hospital were randomly divided into a training group and an internal validation group (ratio 7:3), and 100 patients (50 PLC, 50 SP-TB) in Sichuan Provincial People's Hospital were identified as an external validation group. The collected qualitative and quantitative variables were used to determine the independent feature variables for distinguishing between PLC and SP-TB through univariate logistic regression, multivariate logistic regression. Then, traditional logistic regression models and machine learning algorithm models (decision tree, random forest, xgboost, support vector machine, k-nearest neighbors, light gradient boosting machine) were established using the independent feature variables. The model with the highest AUC value in the internal validation group was used for subsequent analysis. The receiver operating characteristic curve (ROC), calibration curve, and decision curves analysis (DCA) were used to assess the model's discrimination, calibration, and clinical usefulness. Result Age, smoking history, maximum diameter of lesion, lobulation, spiculation, calcification, and vascular convergence sign were independent characteristic variables to differentiate PLC from SP-TB. The logistic regression model had the highest AUC value of 0.878 for the internal validation group, based on which a quantitative visualization nomogram was constructed to discriminate the two diseases. The area under the ROC curve (AUC) of the model in the training, internal validation, and external validation groups were 0.915 (95 % CI: 0.866–0.965), 0.878 (95 % CI: 0.784–0.971), and 0.912 (95 % CI: 0.855–0.969), respectively, and the calibration curves fitted well. Decision curves analysis (DCA) confirmed the good clinical benefit of the model. Conclusion The model constructed based on clinical and imaging features can accurately differentiate between PLC and SP-TB, providing potential value for developing reasonable clinical plans.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大模型应助ChenxiDai采纳,获得10
刚刚
活泼酸奶完成签到 ,获得积分10
1秒前
1秒前
albertxin发布了新的文献求助10
2秒前
hhh完成签到 ,获得积分10
2秒前
atom发布了新的文献求助10
3秒前
4秒前
Roy发布了新的文献求助150
4秒前
Grayball应助wh雨采纳,获得10
6秒前
jsdhwdmax完成签到,获得积分20
6秒前
6秒前
卡卡卡完成签到,获得积分20
7秒前
郑总发布了新的文献求助10
7秒前
领导范儿应助Otorhino采纳,获得10
8秒前
邢慧兰完成签到,获得积分10
9秒前
10秒前
Young完成签到 ,获得积分10
10秒前
徐嘉雯发布了新的文献求助10
10秒前
hong发布了新的文献求助10
10秒前
shuke完成签到,获得积分10
10秒前
天天快乐应助jsdhwdmax采纳,获得10
11秒前
11秒前
隐形曼青应助maidoudou采纳,获得10
12秒前
十年发布了新的文献求助10
12秒前
我是老大应助111采纳,获得10
13秒前
zhendema完成签到,获得积分10
13秒前
标致的问晴完成签到,获得积分10
13秒前
糟糕的铁身应助TrucCSC采纳,获得10
13秒前
shuke发布了新的文献求助10
14秒前
vivi完成签到,获得积分10
14秒前
王毅发布了新的文献求助10
14秒前
水吉2000完成签到,获得积分10
15秒前
wh雨完成签到,获得积分10
15秒前
15秒前
ChenxiDai发布了新的文献求助10
16秒前
16秒前
volcano完成签到 ,获得积分10
17秒前
整齐冬瓜完成签到,获得积分10
17秒前
mang_er发布了新的文献求助10
18秒前
小笨猪完成签到,获得积分10
18秒前
高分求助中
Lire en communiste 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
BIOMIMETIC RESTORATIVE DENTISTRY (volume 2) 500
Product Class 10: Acridin-9(10H)-ones and Related Systems 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
Evolution 3rd edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3177981
求助须知:如何正确求助?哪些是违规求助? 2828966
关于积分的说明 7969388
捐赠科研通 2490275
什么是DOI,文献DOI怎么找? 1327503
科研通“疑难数据库(出版商)”最低求助积分说明 635251
版权声明 602904