材料科学
兴奋剂
离子
钠
阴极
电压
无机化学
光电子学
电气工程
冶金
有机化学
化学
工程类
作者
Jiang Cao,Biao Chen,Maowen Xu,Jian Jiang
标识
DOI:10.1016/j.ensm.2024.103518
摘要
The single ionic doping helps suppress the detrimental phase transition when P2-type layered cathodes are charged to a high voltage above 4.0 V (vs. Na+/Na). However, this is realized at the sacrifice of their electrochemical redox centers and output capacities. To achieve both high voltage tolerance and capacity, we herein propose a cooperative Al cation and F anion co-doping strategy. The XANES detections affirm that substituting Ni/O with Al/F intends to augment the amount of highly active Mn3+ cations in cathodes, making more contributions on specific capacities for sodium-ion batteries (SIBs). Besides, this co-doping treatment would disorder the transition metal ionic arrangements of cathodes, disrupting long-range Jahn-Teller effects and impeding other undesired phases generation. As a proof-of-concept demonstration, our designed Na2/3Ni0.23Al0.1Mn2/3O1.95F0.05 (NAF) cathodes show a delivered capacity as high as 142.0 mAh g−1 (0.2C), and an impressive capacity retention of 86.7 % after all cycling. The in-situ XRD detections reveal no apparent O2 phase peaks emerge until 4.23 V upon deep Na+ extraction from NAF. This work provides a key understanding toward cation/anion co-doping effects, opening up a useful avenue for rational design of practical P2-type cathodes for SIBs.
科研通智能强力驱动
Strongly Powered by AbleSci AI