Can machine learning assist in systemic sclerosis diagnosis and management? A scoping review

医学 机器学习 梅德林 人工智能 系统回顾 数字图书馆 重症监护医学 计算机科学 艺术 文学类 诗歌 政治学 法学
作者
Eric McMullen,Rajan Grewal,Kyle Storm,Lawrence Mbuagbaw,Maxine R Maretzki,Maggie Larché
出处
期刊:Journal of scleroderma and related disorders [SAGE]
卷期号:9 (3): 171-177
标识
DOI:10.1177/23971983241253718
摘要

This scoping review aims to summarize the existing literature on how machine learning can be used to impact systemic sclerosis diagnosis, management, and treatment. Following Preferred Reporting Items for Systematic reviews and Meta-Analyses extension for Scoping Reviews (PRISMA-ScR) reporting guidelines, Embase, Web of Science, Medline (PubMed), IEEE Xplore, and ACM Digital Library were searched from inception to 3 March 2024, for primary literature reporting on machine learning models in any capacity regarding scleroderma. Following robust triaging, 11 retrospective studies were included in this scoping review. Three studies focused on the diagnosis of scleroderma to influence preferred management and nine studies on treatment and predicting treatment response to scleroderma. Nine studies used supervision in their machine learning model training; two used supervised and unsupervised training and one used solely unsupervised training. A total of 817 patients were included in the data sets. Seven of the included articles used patients from the United States, one from Belgium, two from Japan, and two from China. Although currently limited to retrospective studies, the results indicate that machine learning modeling may have a role in early diagnosis, management, therapeutic decision-making, and in the development of future therapies for systemic sclerosis. Prospective studies examining the use of machine learning in clinical practice are recommended to confirm the utility of machine learning in patients with systemic sclerosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
HEROTREE完成签到 ,获得积分10
2秒前
ABC发布了新的文献求助20
4秒前
4秒前
木子李33发布了新的文献求助30
5秒前
nnnick完成签到,获得积分0
5秒前
Mr.Left完成签到,获得积分10
6秒前
Ventus发布了新的文献求助10
6秒前
凡亚比关注了科研通微信公众号
7秒前
深情安青应助张瑞雪采纳,获得10
8秒前
wanci应助专一的依秋采纳,获得10
11秒前
Ava应助浮三白采纳,获得10
12秒前
传奇3应助沸腾鱼健康采纳,获得10
13秒前
顺心的舞蹈完成签到,获得积分10
13秒前
炸鸡叔发布了新的文献求助10
15秒前
16秒前
17秒前
aaa完成签到 ,获得积分10
17秒前
18秒前
kourosz完成签到,获得积分20
19秒前
国家栋梁完成签到,获得积分10
21秒前
21秒前
稚初完成签到,获得积分10
21秒前
星月发布了新的文献求助10
22秒前
lr发布了新的文献求助10
23秒前
25秒前
浮三白发布了新的文献求助10
25秒前
27秒前
夏夏发布了新的文献求助10
30秒前
再也不拖发布了新的文献求助10
30秒前
小骁同学完成签到,获得积分10
31秒前
元谷雪应助姚美阁采纳,获得10
32秒前
rainbow5432完成签到 ,获得积分10
32秒前
张阳完成签到,获得积分10
34秒前
仁爱的绮兰完成签到,获得积分20
34秒前
科研通AI2S应助科研通管家采纳,获得10
36秒前
SciGPT应助科研通管家采纳,获得10
36秒前
隐形曼青应助科研通管家采纳,获得10
37秒前
英姑应助科研通管家采纳,获得10
37秒前
隐形曼青应助科研通管家采纳,获得10
37秒前
37秒前
高分求助中
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137706
求助须知:如何正确求助?哪些是违规求助? 2788609
关于积分的说明 7787778
捐赠科研通 2444975
什么是DOI,文献DOI怎么找? 1300139
科研通“疑难数据库(出版商)”最低求助积分说明 625814
版权声明 601043