Dense interpolation – Wavelength shifting – Mean spectra subtraction correction: A new calibration transfer algorithm for near-infrared spectroscopy instruments on crude oil fast assay

分光计 近红外光谱 插值(计算机图形学) 校准 计算机科学 波长 谱线 渲染(计算机图形) 减法 光谱学 算法 高光谱成像 光谱形状分析 光学 遥感 人工智能 数学 物理 统计 地质学 运动(物理) 算术 量子力学 天文
作者
Jingyan Li,Xiaoli Chu
出处
期刊:Fuel [Elsevier]
卷期号:370: 131820-131820 被引量:1
标识
DOI:10.1016/j.fuel.2024.131820
摘要

Model transfer, also known as instrument standardization, constitutes a fundamental aspect of near-infrared (NIR) technology. Owing to disparities among spectrometers, spectra acquired from identical samples by different instruments may be erroneously classified as belonging to distinct samples. Consequently, spectral databases established on one spectrometer cannot be directly applied to other instruments, thus impeding the widespread adoption of NIR technology. Model transfer algorithms based on factor analysis often compromise spectral integrity, rendering the transferred spectra unsuitable for pattern recognition. To address this challenge and facilitate the universality of NIR spectral databases for crude oil across diverse instrument platforms, this study proposes a novel methodology, Dense Interpolation-Wavelength Shifting-Mean Spectra Subtraction Correction. This method integrates dense interpolation, wavelength alignment, and background compensation techniques. Through meticulous implementation, this approach effectively mitigates spectral deviations induced by instrument discrepancies. Employing the moving window correlation coefficient method, the transferred NIR spectra of crude oil undergo pattern recognition computations within the NIR spectral database established on the primary instrument. The results demonstrate a successful recognition rate exceeding 90 %, indicating the effectiveness of the proposed methodology in improving spectral consistency and enabling robust pattern recognition in NIR analysis of crude oil.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
俗人应助自知难明采纳,获得10
1秒前
1秒前
拼搏绿柏完成签到,获得积分10
1秒前
lemon完成签到,获得积分10
2秒前
顾天佑发布了新的文献求助10
2秒前
坚强馒头发布了新的文献求助10
3秒前
qq完成签到,获得积分10
4秒前
科目三应助野性的书芹采纳,获得10
4秒前
赘婿应助科研通管家采纳,获得10
5秒前
nenoaowu应助科研通管家采纳,获得10
5秒前
隐形曼青应助科研通管家采纳,获得10
5秒前
李爱国应助科研通管家采纳,获得10
5秒前
深情安青应助科研通管家采纳,获得10
5秒前
云瑾应助科研通管家采纳,获得20
5秒前
Boyce完成签到,获得积分10
5秒前
scq发布了新的文献求助10
5秒前
SciGPT应助科研通管家采纳,获得10
5秒前
Jasper应助科研通管家采纳,获得10
5秒前
上官若男应助科研通管家采纳,获得10
6秒前
我是老大应助科研通管家采纳,获得10
6秒前
星辰大海应助科研通管家采纳,获得10
6秒前
xjcy应助科研通管家采纳,获得10
6秒前
Lin发布了新的文献求助10
6秒前
6秒前
6秒前
李爱国应助flysky120采纳,获得10
7秒前
7秒前
筱诸雄完成签到,获得积分10
7秒前
Ava应助tong童采纳,获得10
8秒前
9秒前
pluto应助bcxly采纳,获得10
10秒前
麗会水逆退散完成签到,获得积分10
11秒前
11秒前
19发布了新的文献求助10
11秒前
11秒前
AppleDog发布了新的文献求助10
11秒前
一一应助NN采纳,获得30
12秒前
无花果应助聪慧若风采纳,获得10
12秒前
14秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Semiconductor Process Reliability in Practice 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3233489
求助须知:如何正确求助?哪些是违规求助? 2880104
关于积分的说明 8213669
捐赠科研通 2547469
什么是DOI,文献DOI怎么找? 1376998
科研通“疑难数据库(出版商)”最低求助积分说明 647713
邀请新用户注册赠送积分活动 623154