Combining spectrum, thermal, and texture features using machine learning algorithms for wheat nitrogen nutrient index estimation and model transferability analysis

可转让性 索引(排版) 算法 纹理(宇宙学) 氮气 估计 计算机科学 人工智能 机器学习 模式识别(心理学) 数据挖掘 工程类 化学 图像(数学) 万维网 罗伊特 有机化学 系统工程
作者
Shaohua Zhang,Jianzhao Duan,Xinghui Qi,Yuezhi Gao,Li He,L.X. Liu,Tiancai Guo,Wei Feng
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:222: 109022-109022 被引量:13
标识
DOI:10.1016/j.compag.2024.109022
摘要

The nitrogen nutrition index (NNI) has been extensively applied for the diagnosis of crop nitrogen status, providing insights into efficient nitrogen utilization and plant growth. In this study, we utilized a low-altitude unmanned aerial vehicle (UAV) platform, equipped with multispectral (MS), red–green–blue (RGB), and thermal infrared (TIR) cameras, to comprehensively capture wheat spectral information. The analysis of the relationship between NNI and relative yield revealed an initially linear relationship, which saturated for high NNI values. To enhance accuracy and minimize complexity, we employed a random forest (RF) – recursive feature elimination (RFE) method to select features as inputs for four machine learning (ML) models: back propagation neural network (BPNN), extreme learning machine (ELM), support vector regression (SVR), and Gaussian process regression (GPR). After feature selection, the prediction accuracies of single-sensor models were ranked as: MS > RGB > TIR. The R2 values for the four ML models were in the range of 0.54–0.75. Among multi-sensor combinations, the GPR with MS + RGB + TIR input features achieved the best results with R2 = 0.89 and RPD = 2.52. Further, the dataset was partitioned into six subsets based on location and cultivar variety to evaluate model transferability. The results showed that the transferability largely suffered during the bivariate conditions of different varieties at different locations; the transferability of the model was average improved by 11 % when GPR was combined with transfer component analysis (TCA). The accuracy and transferability of the NNI estimation models significantly improved, offering valuable guidance and methodological support for diagnosing the nitrogen nutrient status of wheat.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
香香发布了新的文献求助10
3秒前
桐桐应助聪明的阿黄采纳,获得10
4秒前
冒如怿发布了新的文献求助10
4秒前
yu完成签到,获得积分10
6秒前
科研通AI6应助派大赐采纳,获得10
7秒前
waiting完成签到,获得积分10
12秒前
LELE完成签到 ,获得积分10
13秒前
风语者完成签到 ,获得积分10
13秒前
Hanna发布了新的文献求助10
14秒前
14秒前
帅气的小翟完成签到,获得积分10
16秒前
16秒前
lxd完成签到 ,获得积分10
16秒前
yu发布了新的文献求助10
20秒前
Maggie完成签到,获得积分10
21秒前
21秒前
waiting发布了新的文献求助10
21秒前
22秒前
Orange应助XIEQ采纳,获得10
23秒前
23秒前
xzy998应助zaaaz采纳,获得10
24秒前
852应助xmhxpz采纳,获得10
24秒前
bulubulubulubule完成签到,获得积分10
25秒前
26秒前
27秒前
helloworld发布了新的文献求助10
28秒前
30秒前
稚祎完成签到 ,获得积分10
30秒前
30秒前
科研通AI6应助yyanxuemin919采纳,获得10
30秒前
善学以致用应助helloworld采纳,获得10
33秒前
gyy关注了科研通微信公众号
34秒前
35秒前
共享精神应助无情的尔风采纳,获得30
35秒前
36秒前
努力摸鱼的柠檬完成签到,获得积分20
37秒前
38秒前
单身的青柏完成签到 ,获得积分10
38秒前
潘润朗完成签到,获得积分10
38秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
Essential Guides for Early Career Teachers: Mental Well-being and Self-care 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5563579
求助须知:如何正确求助?哪些是违规求助? 4648467
关于积分的说明 14685031
捐赠科研通 4590445
什么是DOI,文献DOI怎么找? 2518519
邀请新用户注册赠送积分活动 1491143
关于科研通互助平台的介绍 1462432