已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Combining spectrum, thermal, and texture features using machine learning algorithms for wheat nitrogen nutrient index estimation and model transferability analysis

可转让性 索引(排版) 算法 纹理(宇宙学) 氮气 估计 计算机科学 人工智能 机器学习 模式识别(心理学) 数据挖掘 工程类 化学 图像(数学) 有机化学 罗伊特 系统工程 万维网
作者
Shaohua Zhang,Jianzhao Duan,Xinghui Qi,Yuezhi Gao,Li He,L.X. Liu,Tiancai Guo,Wei Feng
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:222: 109022-109022 被引量:4
标识
DOI:10.1016/j.compag.2024.109022
摘要

The nitrogen nutrition index (NNI) has been extensively applied for the diagnosis of crop nitrogen status, providing insights into efficient nitrogen utilization and plant growth. In this study, we utilized a low-altitude unmanned aerial vehicle (UAV) platform, equipped with multispectral (MS), red–green–blue (RGB), and thermal infrared (TIR) cameras, to comprehensively capture wheat spectral information. The analysis of the relationship between NNI and relative yield revealed an initially linear relationship, which saturated for high NNI values. To enhance accuracy and minimize complexity, we employed a random forest (RF) – recursive feature elimination (RFE) method to select features as inputs for four machine learning (ML) models: back propagation neural network (BPNN), extreme learning machine (ELM), support vector regression (SVR), and Gaussian process regression (GPR). After feature selection, the prediction accuracies of single-sensor models were ranked as: MS > RGB > TIR. The R2 values for the four ML models were in the range of 0.54–0.75. Among multi-sensor combinations, the GPR with MS + RGB + TIR input features achieved the best results with R2 = 0.89 and RPD = 2.52. Further, the dataset was partitioned into six subsets based on location and cultivar variety to evaluate model transferability. The results showed that the transferability largely suffered during the bivariate conditions of different varieties at different locations; the transferability of the model was average improved by 11 % when GPR was combined with transfer component analysis (TCA). The accuracy and transferability of the NNI estimation models significantly improved, offering valuable guidance and methodological support for diagnosing the nitrogen nutrient status of wheat.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ava应助qiu采纳,获得10
5秒前
傅荣轩完成签到,获得积分10
10秒前
ding应助颜哈哈采纳,获得30
10秒前
毛毛完成签到,获得积分10
12秒前
13秒前
啊冰关注了科研通微信公众号
15秒前
15秒前
辣味锅包肉发布了新的文献求助100
17秒前
hdn完成签到 ,获得积分10
18秒前
我是好人完成签到,获得积分10
18秒前
Fx完成签到 ,获得积分10
22秒前
25秒前
31秒前
善学以致用应助天天向上采纳,获得30
33秒前
Luoling完成签到 ,获得积分10
35秒前
小智完成签到,获得积分10
35秒前
阿萌毛毛发布了新的文献求助10
36秒前
852应助酷酷的安柏采纳,获得10
36秒前
深情安青应助靓丽衫采纳,获得30
37秒前
赘婿应助科研通管家采纳,获得10
40秒前
英俊的铭应助科研通管家采纳,获得10
40秒前
Ava应助科研通管家采纳,获得10
40秒前
科研通AI2S应助科研通管家采纳,获得10
40秒前
华仔应助科研通管家采纳,获得10
41秒前
搜集达人应助科研通管家采纳,获得10
41秒前
41秒前
Hello应助11111111112采纳,获得10
41秒前
43秒前
Dana完成签到 ,获得积分10
45秒前
chiyudoubao完成签到 ,获得积分10
46秒前
46秒前
Aniya_Shine完成签到 ,获得积分10
47秒前
qiu发布了新的文献求助10
48秒前
天天向上发布了新的文献求助30
49秒前
笨笨西牛完成签到 ,获得积分10
50秒前
51秒前
苹果笑寒完成签到,获得积分10
55秒前
57秒前
58秒前
SCT发布了新的文献求助10
58秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
How Maoism Was Made: Reconstructing China, 1949-1965 800
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3310963
求助须知:如何正确求助?哪些是违规求助? 2943728
关于积分的说明 8516304
捐赠科研通 2619056
什么是DOI,文献DOI怎么找? 1431863
科研通“疑难数据库(出版商)”最低求助积分说明 664484
邀请新用户注册赠送积分活动 649755