Optimizing testing feedback in introductory chemistry: a multi-treatment study exploring varying levels of assessment feedback and subsequent performance

计算机科学 化学
作者
Kristen L. Murphy,David G. Schreurs,Melonie A. Teichert,Cynthia J. Luxford,Jaclyn M. Trate,Jordan T. Harshmann,Jamie L. Schneider
出处
期刊:Chemistry Education. Research and Practice [The Royal Society of Chemistry]
标识
DOI:10.1039/d4rp00077c
摘要

Providing students with feedback on their performance is a critical part of enhancing student learning in chemistry and is often integrated into homework assignments, quizzes, and exams. However, not all feedback is created equal, and the type of feedback the student receives can dramatically alter the utility of the feedback to reinforce correct processes and assist in correcting incorrect processes. This work seeks to establish a ranking of how eleven different types of testing feedback affected student retention or growth in performance on multiple-choice general chemistry questions. These feedback methods ranged from simple noncorrective feedback to more complex and engaging elaborative feedback. A test-retest model was used with a one-week gap between the initial test and following test in general chemistry I. Data collection took place at multiple institutions over multiple years. Data analysis used four distinct grading schemes to estimate student performance. These grading schemes included dichotomous scoring, two polytomous scoring techniques, and the use of item response theory to estimate students’ true score. Data were modeled using hierarchical linear modeling which was set up to control for any differences in initial abilities and to determine the growth in performance associated with each treatment. Results indicated that when delayed elaborative feedback was paired with students being asked to recall/rework the problem, the largest student growth was observed. To dive deeper into student growth, both the differences in specific content-area improvement and the ability levels of students who improved the most were analyzed.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
跳跃飞瑶发布了新的文献求助10
刚刚
刚刚
刚刚
OriC发布了新的文献求助10
刚刚
刚刚
刚刚
skjjj发布了新的文献求助10
刚刚
danyang发布了新的文献求助10
1秒前
2秒前
燕子归来发布了新的文献求助10
2秒前
phoebe完成签到,获得积分10
2秒前
3秒前
3秒前
步真宁发布了新的文献求助10
3秒前
小许小许完成签到,获得积分10
4秒前
研友_Z63G18发布了新的文献求助10
5秒前
orixero应助小菀儿采纳,获得10
5秒前
LSF发布了新的文献求助10
6秒前
6秒前
6秒前
麦克尔发布了新的文献求助10
7秒前
7秒前
LLF发布了新的文献求助10
7秒前
zz发布了新的文献求助10
7秒前
8秒前
轻松豌豆应助xh采纳,获得10
8秒前
9秒前
Little fox完成签到,获得积分20
9秒前
niumi190完成签到,获得积分0
9秒前
jichang完成签到,获得积分10
10秒前
10秒前
phoebe发布了新的文献求助10
10秒前
量子星尘发布了新的文献求助10
10秒前
veinard完成签到,获得积分10
11秒前
mgl关闭了mgl文献求助
11秒前
11秒前
Louuuue完成签到,获得积分10
11秒前
自律完成签到,获得积分10
11秒前
12秒前
量子星尘发布了新的文献求助10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5769283
求助须知:如何正确求助?哪些是违规求助? 5579143
关于积分的说明 15421126
捐赠科研通 4902990
什么是DOI,文献DOI怎么找? 2638048
邀请新用户注册赠送积分活动 1585929
关于科研通互助平台的介绍 1541056