亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Optimizing testing feedback in introductory chemistry: a multi-treatment study exploring varying levels of assessment feedback and subsequent performance

计算机科学 化学
作者
Kristen L. Murphy,David G. Schreurs,Melonie A. Teichert,Cynthia J. Luxford,Jaclyn M. Trate,Jordan T. Harshmann,Jamie L. Schneider
出处
期刊:Chemistry Education. Research and Practice [Royal Society of Chemistry]
标识
DOI:10.1039/d4rp00077c
摘要

Providing students with feedback on their performance is a critical part of enhancing student learning in chemistry and is often integrated into homework assignments, quizzes, and exams. However, not all feedback is created equal, and the type of feedback the student receives can dramatically alter the utility of the feedback to reinforce correct processes and assist in correcting incorrect processes. This work seeks to establish a ranking of how eleven different types of testing feedback affected student retention or growth in performance on multiple-choice general chemistry questions. These feedback methods ranged from simple noncorrective feedback to more complex and engaging elaborative feedback. A test-retest model was used with a one-week gap between the initial test and following test in general chemistry I. Data collection took place at multiple institutions over multiple years. Data analysis used four distinct grading schemes to estimate student performance. These grading schemes included dichotomous scoring, two polytomous scoring techniques, and the use of item response theory to estimate students’ true score. Data were modeled using hierarchical linear modeling which was set up to control for any differences in initial abilities and to determine the growth in performance associated with each treatment. Results indicated that when delayed elaborative feedback was paired with students being asked to recall/rework the problem, the largest student growth was observed. To dive deeper into student growth, both the differences in specific content-area improvement and the ability levels of students who improved the most were analyzed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
1秒前
重要问丝完成签到 ,获得积分10
36秒前
46秒前
肥肉叉烧发布了新的文献求助10
49秒前
52秒前
肥肉叉烧完成签到,获得积分10
54秒前
1分钟前
Russell发布了新的文献求助10
1分钟前
qqq完成签到,获得积分10
1分钟前
1分钟前
Russell完成签到,获得积分10
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
2分钟前
2分钟前
莉莉斯完成签到 ,获得积分10
2分钟前
yedesoj发布了新的文献求助10
2分钟前
XING完成签到 ,获得积分10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
打打应助灰色与青采纳,获得10
3分钟前
Owen应助科研通管家采纳,获得10
3分钟前
3分钟前
灰色与青发布了新的文献求助10
3分钟前
灰色与青完成签到,获得积分10
3分钟前
3分钟前
丁牛青发布了新的文献求助10
3分钟前
Wing完成签到 ,获得积分10
4分钟前
量子星尘发布了新的文献求助10
4分钟前
水若琳完成签到,获得积分10
4分钟前
shenghaowen完成签到,获得积分10
4分钟前
FashionBoy应助科研通管家采纳,获得10
5分钟前
科研通AI5应助科研通管家采纳,获得10
5分钟前
九黎完成签到 ,获得积分10
5分钟前
量子星尘发布了新的文献求助10
5分钟前
charih完成签到 ,获得积分10
5分钟前
科研通AI2S应助yedesoj采纳,获得10
5分钟前
李健应助morena采纳,获得10
6分钟前
精明的橘子完成签到,获得积分10
6分钟前
Stove完成签到,获得积分10
6分钟前
lovelife完成签到,获得积分10
6分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3953438
求助须知:如何正确求助?哪些是违规求助? 3498939
关于积分的说明 11093342
捐赠科研通 3229512
什么是DOI,文献DOI怎么找? 1785471
邀请新用户注册赠送积分活动 869430
科研通“疑难数据库(出版商)”最低求助积分说明 801442