Optimizing testing feedback in introductory chemistry: a multi-treatment study exploring varying levels of assessment feedback and subsequent performance

计算机科学 化学
作者
Kristen L. Murphy,David G. Schreurs,Melonie A. Teichert,Cynthia J. Luxford,Jaclyn M. Trate,Jordan T. Harshmann,Jamie L. Schneider
出处
期刊:Chemistry Education. Research and Practice [The Royal Society of Chemistry]
标识
DOI:10.1039/d4rp00077c
摘要

Providing students with feedback on their performance is a critical part of enhancing student learning in chemistry and is often integrated into homework assignments, quizzes, and exams. However, not all feedback is created equal, and the type of feedback the student receives can dramatically alter the utility of the feedback to reinforce correct processes and assist in correcting incorrect processes. This work seeks to establish a ranking of how eleven different types of testing feedback affected student retention or growth in performance on multiple-choice general chemistry questions. These feedback methods ranged from simple noncorrective feedback to more complex and engaging elaborative feedback. A test-retest model was used with a one-week gap between the initial test and following test in general chemistry I. Data collection took place at multiple institutions over multiple years. Data analysis used four distinct grading schemes to estimate student performance. These grading schemes included dichotomous scoring, two polytomous scoring techniques, and the use of item response theory to estimate students’ true score. Data were modeled using hierarchical linear modeling which was set up to control for any differences in initial abilities and to determine the growth in performance associated with each treatment. Results indicated that when delayed elaborative feedback was paired with students being asked to recall/rework the problem, the largest student growth was observed. To dive deeper into student growth, both the differences in specific content-area improvement and the ability levels of students who improved the most were analyzed.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Accpted河豚发布了新的文献求助10
刚刚
小蘑菇应助linlin采纳,获得10
刚刚
1秒前
1秒前
3秒前
在水一方应助kanglan采纳,获得10
4秒前
量子星尘发布了新的文献求助10
4秒前
烜66发布了新的文献求助10
4秒前
王国向完成签到 ,获得积分10
5秒前
orixero应助逍遥哥哥采纳,获得30
5秒前
量子星尘发布了新的文献求助10
5秒前
隐形曼青应助朴实的母鸡采纳,获得10
6秒前
6秒前
十一发布了新的文献求助10
6秒前
完美世界应助hong采纳,获得10
6秒前
7秒前
LL完成签到 ,获得积分10
7秒前
7秒前
7秒前
8秒前
8秒前
糖水铺完成签到,获得积分10
9秒前
顶刊在逃一作完成签到,获得积分10
9秒前
9秒前
天师府完成签到 ,获得积分10
9秒前
10秒前
JamesPei应助愤怒的电话采纳,获得10
10秒前
BowieHuang应助晴天采纳,获得10
10秒前
10秒前
10秒前
没有感情的情感家完成签到,获得积分20
11秒前
11秒前
nini发布了新的文献求助10
12秒前
一区李发布了新的文献求助10
12秒前
12秒前
zan完成签到,获得积分10
13秒前
Hello应助薯片采纳,获得10
13秒前
科研通AI6.1应助年轻道之采纳,获得10
13秒前
14秒前
叶子完成签到,获得积分10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5761723
求助须知:如何正确求助?哪些是违规求助? 5531466
关于积分的说明 15400456
捐赠科研通 4897978
什么是DOI,文献DOI怎么找? 2634601
邀请新用户注册赠送积分活动 1582773
关于科研通互助平台的介绍 1538027