Development of a Prognostic Risk Model Based on Oxidative StressRelated Genes for Platinum-Resistant Ovarian Cancer Patients

内科学 肿瘤科 医学 比例危险模型 卵巢癌 氧化应激 恶性肿瘤 癌症
作者
Huishan Su,Yaxin Hou,Dexiang Zhu,Rong‐Qing Pang,Shu Tian,Ran Ding,Ying Chen,Sihe Zhang
出处
期刊:Recent Patents on Anti-cancer Drug Discovery [Bentham Science]
卷期号:19
标识
DOI:10.2174/0115748928311077240424065832
摘要

Introduction: Ovarian Cancer (OC) is a heterogeneous malignancy with poor outcomes. Oxidative stress plays a crucial role in developing drug resistance. However, the relationships between Oxidative Stress-related Genes (OSRGs) and the prognosis of platinum-resistant OC remain unclear. This study aimed to develop an OSRGs-based prognostic risk model for platinum-resistant OC patients. Methods: Gene Set Enrichment Analysis (GSEA) was performed to determine the expression difference of OSRGs between platinum-resistant and -sensitive OC patients. Cox regression analyses were used to identify the prognostic OSRGs and establish a risk score model. The model was validated by using an external dataset. Machine learning was used to determine the prognostic OSRGs associated with platinum resistance. Finally, the biological functions of selected OSRG were determined via in vitro cellular experiments. Results: Three gene sets associated with oxidative stress-related pathways were enriched (p < 0.05), and 105 OSRGs were found to be differentially expressed between platinum-resistant and - sensitive OC (p < 0.05). Twenty prognosis-associated OSRGs were identified (HR: 0:562-5.437; 95% CI: 0.319-20.148; p < 0.005), and seven independent OSRGs were used to construct a prognostic risk score model, which accurately predicted the survival of OC patients (1-, 3-, and 5-year AUC=0.69, 0.75, and 0.67, respectively). The prognostic potential of this model was confirmed in the validation cohort. Machine learning showed five prognostic OSRGs (SPHK1, PXDNL, C1QA, WRN, and SETX) to be strongly correlated with platinum resistance in OC patients. Cellular experiments showed that WRN significantly promoted the malignancy and platinum resistance of OC cells. Conclusion: The OSRGs-based risk score model can efficiently predict the prognosis and platinum resistance of OC patients. This model may improve the risk stratification of OC patients in the clinic.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
swbbb发布了新的文献求助10
1秒前
Katherine完成签到,获得积分10
2秒前
2秒前
汉堡小屁发布了新的文献求助10
3秒前
半岛铁盒完成签到,获得积分10
4秒前
4秒前
Meredith发布了新的文献求助10
4秒前
6秒前
Zac发布了新的文献求助10
6秒前
我爱科研完成签到,获得积分10
7秒前
薰硝壤应助欣喜以丹采纳,获得10
7秒前
xiaoyezi123完成签到,获得积分10
8秒前
邓佳鑫Alan应助Katherine采纳,获得20
8秒前
Ck发布了新的文献求助10
8秒前
9秒前
小七发布了新的文献求助10
9秒前
Liuyun完成签到,获得积分10
9秒前
金妖靜完成签到 ,获得积分10
9秒前
10秒前
hym111完成签到,获得积分10
10秒前
yiyi发布了新的文献求助50
10秒前
11秒前
李健的粉丝团团长应助lin采纳,获得10
13秒前
13秒前
13秒前
完美梨愁完成签到 ,获得积分10
14秒前
14秒前
Chrischelsea发布了新的文献求助10
15秒前
张三坟应助Monster采纳,获得30
15秒前
卓疾发布了新的文献求助10
15秒前
杨19980625发布了新的文献求助10
15秒前
1b关注了科研通微信公众号
16秒前
你要学好发布了新的文献求助10
17秒前
17秒前
彳亍1117应助柴夫采纳,获得20
18秒前
刘十九发布了新的文献求助20
18秒前
星期五发布了新的文献求助10
18秒前
18秒前
Cyrus发布了新的文献求助10
18秒前
19秒前
高分求助中
The ACS Guide to Scholarly Communication 2500
Sustainability in Tides Chemistry 2000
Pharmacogenomics: Applications to Patient Care, Third Edition 1000
Studien zur Ideengeschichte der Gesetzgebung 1000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Threaded Harmony: A Sustainable Approach to Fashion 810
《粉体与多孔固体材料的吸附原理、方法及应用》(需要中文翻译版,化学工业出版社,陈建,周力,王奋英等译) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3083756
求助须知:如何正确求助?哪些是违规求助? 2737102
关于积分的说明 7543295
捐赠科研通 2386458
什么是DOI,文献DOI怎么找? 1265484
科研通“疑难数据库(出版商)”最低求助积分说明 613100
版权声明 597951