Development of a Prognostic Risk Model Based on Oxidative StressRelated Genes for Platinum-Resistant Ovarian Cancer Patients

内科学 肿瘤科 医学 比例危险模型 卵巢癌 氧化应激 恶性肿瘤 癌症
作者
Huishan Su,Yaxin Hou,Dexiang Zhu,Rong‐Qing Pang,Shu Tian,Ran Ding,Ying Chen,Sihe Zhang
出处
期刊:Recent Patents on Anti-cancer Drug Discovery [Bentham Science]
卷期号:19
标识
DOI:10.2174/0115748928311077240424065832
摘要

Introduction: Ovarian Cancer (OC) is a heterogeneous malignancy with poor outcomes. Oxidative stress plays a crucial role in developing drug resistance. However, the relationships between Oxidative Stress-related Genes (OSRGs) and the prognosis of platinum-resistant OC remain unclear. This study aimed to develop an OSRGs-based prognostic risk model for platinum-resistant OC patients. Methods: Gene Set Enrichment Analysis (GSEA) was performed to determine the expression difference of OSRGs between platinum-resistant and -sensitive OC patients. Cox regression analyses were used to identify the prognostic OSRGs and establish a risk score model. The model was validated by using an external dataset. Machine learning was used to determine the prognostic OSRGs associated with platinum resistance. Finally, the biological functions of selected OSRG were determined via in vitro cellular experiments. Results: Three gene sets associated with oxidative stress-related pathways were enriched (p < 0.05), and 105 OSRGs were found to be differentially expressed between platinum-resistant and - sensitive OC (p < 0.05). Twenty prognosis-associated OSRGs were identified (HR: 0:562-5.437; 95% CI: 0.319-20.148; p < 0.005), and seven independent OSRGs were used to construct a prognostic risk score model, which accurately predicted the survival of OC patients (1-, 3-, and 5-year AUC=0.69, 0.75, and 0.67, respectively). The prognostic potential of this model was confirmed in the validation cohort. Machine learning showed five prognostic OSRGs (SPHK1, PXDNL, C1QA, WRN, and SETX) to be strongly correlated with platinum resistance in OC patients. Cellular experiments showed that WRN significantly promoted the malignancy and platinum resistance of OC cells. Conclusion: The OSRGs-based risk score model can efficiently predict the prognosis and platinum resistance of OC patients. This model may improve the risk stratification of OC patients in the clinic.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Magnolia完成签到,获得积分20
3秒前
8秒前
knn发布了新的文献求助10
8秒前
sam完成签到,获得积分10
9秒前
科研通AI2S应助Zoey采纳,获得10
10秒前
刻苦芹菜发布了新的文献求助10
12秒前
泥肿大完成签到,获得积分10
13秒前
yqcsysu完成签到 ,获得积分10
15秒前
15秒前
Yzh完成签到,获得积分10
15秒前
16秒前
ly完成签到,获得积分10
17秒前
19秒前
调皮友安发布了新的文献求助10
21秒前
tongkaibing完成签到,获得积分10
21秒前
22秒前
不配.应助zjq采纳,获得10
22秒前
saveMA发布了新的文献求助10
24秒前
奋豆完成签到 ,获得积分0
24秒前
nglmy77完成签到 ,获得积分10
25秒前
Fury发布了新的文献求助10
26秒前
CipherSage应助不错哟小伙子采纳,获得10
26秒前
26秒前
27秒前
TigerOvO完成签到,获得积分10
28秒前
完美青柏完成签到 ,获得积分10
29秒前
lcx完成签到,获得积分20
30秒前
66发布了新的文献求助10
32秒前
33秒前
33秒前
科研通AI2S应助殷权威采纳,获得10
33秒前
自然从寒完成签到,获得积分10
34秒前
tongkaibing发布了新的文献求助10
34秒前
小草blue完成签到,获得积分10
35秒前
过时的热狗完成签到,获得积分10
36秒前
黑暗精灵发布了新的文献求助10
38秒前
38秒前
41秒前
wbb发布了新的文献求助10
42秒前
42秒前
高分求助中
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137814
求助须知:如何正确求助?哪些是违规求助? 2788675
关于积分的说明 7788104
捐赠科研通 2445088
什么是DOI,文献DOI怎么找? 1300139
科研通“疑难数据库(出版商)”最低求助积分说明 625828
版权声明 601043