Brain Tumor Recurrence vs. Radiation Necrosis Classification and Patient Survivability Prediction

生存能力 放射治疗 医学 计算机科学 放射科 计算机网络
作者
M. S. Sadique,Walia Farzana,A. Temtam,E. Lappinen,Arastoo Vossough,Khan M. Iftekharuddin
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-11
标识
DOI:10.1109/jbhi.2024.3406256
摘要

GB (Glioblastoma WHO Grade 4) is the most aggressive type of brain tumor in adults that has a short survival rate even after aggressive treatment with surgery and radiation therapy. The changes in magnetic resonance imaging (MRI) for patients with GB after radiotherapy are indicative of either radiation-induced necrosis (RN) or recurrent brain tumor (rBT). Screening for rBT and RN at an early stage is crucial for facilitating faster treatment and better outcomes for the patients. Differentiating rBT from RN is challenging as both may present with similar radiological and clinical characteristics on MRI. Moreover, learning-based rBT versus RN classification using MRI may suffer from class imbalance due to a lack of patient data. While synthetic data generation using generative models has shown promise to address class imbalances, the underlying data representation may be different in synthetic or augmented data. This study proposes computational modeling with statistically rigorous repeated random sub-sampling to balance the subset sample size for rBT and RN classification. The proposed pipeline includes multiresolution radiomic feature (MRF) extraction followed by feature selection with statistical significance testing (p<0.05). The five-fold cross validation results show the proposed model with MRF features classifies rBT from RN with an area under the curve (AUC) of 0.892±0.055. Moreover, considering the dependence between survival time and censoring time (where patients are not followed up until death), the feasibility of using MRF radiomic features as a non-invasive biomarker to identify patients who are at higher risk of recurrence or radiation necrosis is demonstrated. The cross-validated results show that the MRF model provides the best overall survival prediction with an AUC of 0.77±0.032. Comparison with state-of-the-art methods suggest the proposed method is effective in RN versus rBT classification and patient survivability prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
keshi完成签到,获得积分20
1秒前
1秒前
dddddd完成签到,获得积分20
1秒前
123发布了新的文献求助10
1秒前
2秒前
呜呼完成签到,获得积分10
3秒前
阿里院士完成签到,获得积分10
3秒前
Gstar完成签到,获得积分10
3秒前
通辽小判官完成签到,获得积分10
4秒前
英姑应助lv采纳,获得10
4秒前
我是老大应助努力发文章采纳,获得10
4秒前
SL发布了新的文献求助10
4秒前
5秒前
虚心的飞雪完成签到,获得积分10
5秒前
赘婿应助大白包子李采纳,获得10
5秒前
5秒前
Kristine发布了新的文献求助10
6秒前
123发布了新的文献求助10
6秒前
gjm发布了新的文献求助10
6秒前
陈文娟发布了新的文献求助10
6秒前
爆米花应助小鞠佩奇采纳,获得10
6秒前
ED应助Soleven采纳,获得10
7秒前
隐形曼青应助Zircon采纳,获得10
7秒前
weixin112233完成签到,获得积分10
7秒前
Yan完成签到,获得积分10
7秒前
hahaer发布了新的文献求助10
7秒前
脑洞疼应助iWanted采纳,获得10
7秒前
薛梦关注了科研通微信公众号
8秒前
隐形曼青应助千千晚星采纳,获得10
8秒前
可耐的思远完成签到,获得积分10
8秒前
周雨婷发布了新的文献求助10
8秒前
8秒前
大模型应助老实的百招采纳,获得10
9秒前
Akim应助Xue采纳,获得10
9秒前
9秒前
threonine发布了新的文献求助10
9秒前
清水完成签到,获得积分10
10秒前
10秒前
抹茶冰淇淋完成签到 ,获得积分10
10秒前
西瓜刀发布了新的文献求助10
11秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3978978
求助须知:如何正确求助?哪些是违规求助? 3522830
关于积分的说明 11215177
捐赠科研通 3260355
什么是DOI,文献DOI怎么找? 1799883
邀请新用户注册赠送积分活动 878713
科研通“疑难数据库(出版商)”最低求助积分说明 807060