Brain Tumor Recurrence vs. Radiation Necrosis Classification and Patient Survivability Prediction

生存能力 放射治疗 医学 计算机科学 放射科 计算机网络
作者
M. S. Sadique,Walia Farzana,A. Temtam,E. Lappinen,Arastoo Vossough,Khan M. Iftekharuddin
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-11
标识
DOI:10.1109/jbhi.2024.3406256
摘要

GB (Glioblastoma WHO Grade 4) is the most aggressive type of brain tumor in adults that has a short survival rate even after aggressive treatment with surgery and radiation therapy. The changes in magnetic resonance imaging (MRI) for patients with GB after radiotherapy are indicative of either radiation-induced necrosis (RN) or recurrent brain tumor (rBT). Screening for rBT and RN at an early stage is crucial for facilitating faster treatment and better outcomes for the patients. Differentiating rBT from RN is challenging as both may present with similar radiological and clinical characteristics on MRI. Moreover, learning-based rBT versus RN classification using MRI may suffer from class imbalance due to a lack of patient data. While synthetic data generation using generative models has shown promise to address class imbalances, the underlying data representation may be different in synthetic or augmented data. This study proposes computational modeling with statistically rigorous repeated random sub-sampling to balance the subset sample size for rBT and RN classification. The proposed pipeline includes multiresolution radiomic feature (MRF) extraction followed by feature selection with statistical significance testing (p<0.05). The five-fold cross validation results show the proposed model with MRF features classifies rBT from RN with an area under the curve (AUC) of 0.892±0.055. Moreover, considering the dependence between survival time and censoring time (where patients are not followed up until death), the feasibility of using MRF radiomic features as a non-invasive biomarker to identify patients who are at higher risk of recurrence or radiation necrosis is demonstrated. The cross-validated results show that the MRF model provides the best overall survival prediction with an AUC of 0.77±0.032. Comparison with state-of-the-art methods suggest the proposed method is effective in RN versus rBT classification and patient survivability prediction.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
暖秋发布了新的文献求助10
刚刚
修勾完成签到,获得积分10
1秒前
科研通AI6应助DDDD采纳,获得10
1秒前
hhh完成签到,获得积分10
2秒前
哟哟哟完成签到,获得积分10
2秒前
学长完成签到 ,获得积分10
2秒前
3秒前
LYNB完成签到 ,获得积分10
3秒前
3秒前
小葛发布了新的文献求助10
3秒前
沙绮晴发布了新的文献求助10
3秒前
酷波er应助heshi采纳,获得10
4秒前
wenchong发布了新的文献求助10
4秒前
Rxs发布了新的文献求助10
4秒前
流水完成签到,获得积分10
4秒前
5秒前
lisali发布了新的文献求助10
5秒前
修勾发布了新的文献求助10
5秒前
6秒前
鱼丸完成签到 ,获得积分10
6秒前
淡然的海燕完成签到,获得积分10
7秒前
faye完成签到,获得积分10
7秒前
7秒前
橙子完成签到 ,获得积分20
7秒前
YeMa发布了新的文献求助10
8秒前
lucas完成签到,获得积分10
8秒前
zhull发布了新的文献求助20
8秒前
8秒前
8秒前
合适一斩发布了新的文献求助50
9秒前
9秒前
Jks发布了新的文献求助10
9秒前
老实从蕾发布了新的文献求助10
9秒前
英俊的铭应助傲娇十八采纳,获得10
10秒前
量子星尘发布了新的文献求助10
10秒前
英姑应助liang采纳,获得10
10秒前
曦越发布了新的文献求助10
10秒前
11秒前
Stella应助研友_LMyj0L采纳,获得10
11秒前
清淮发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608504
求助须知:如何正确求助?哪些是违规求助? 4693127
关于积分的说明 14876947
捐赠科研通 4717761
什么是DOI,文献DOI怎么找? 2544250
邀请新用户注册赠送积分活动 1509316
关于科研通互助平台的介绍 1472836