Brain Tumor Recurrence vs. Radiation Necrosis Classification and Patient Survivability Prediction

生存能力 放射治疗 医学 计算机科学 放射科 计算机网络
作者
M. S. Sadique,Walia Farzana,A. Temtam,E. Lappinen,Arastoo Vossough,Khan M. Iftekharuddin
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-11
标识
DOI:10.1109/jbhi.2024.3406256
摘要

GB (Glioblastoma WHO Grade 4) is the most aggressive type of brain tumor in adults that has a short survival rate even after aggressive treatment with surgery and radiation therapy. The changes in magnetic resonance imaging (MRI) for patients with GB after radiotherapy are indicative of either radiation-induced necrosis (RN) or recurrent brain tumor (rBT). Screening for rBT and RN at an early stage is crucial for facilitating faster treatment and better outcomes for the patients. Differentiating rBT from RN is challenging as both may present with similar radiological and clinical characteristics on MRI. Moreover, learning-based rBT versus RN classification using MRI may suffer from class imbalance due to a lack of patient data. While synthetic data generation using generative models has shown promise to address class imbalances, the underlying data representation may be different in synthetic or augmented data. This study proposes computational modeling with statistically rigorous repeated random sub-sampling to balance the subset sample size for rBT and RN classification. The proposed pipeline includes multiresolution radiomic feature (MRF) extraction followed by feature selection with statistical significance testing (p<0.05). The five-fold cross validation results show the proposed model with MRF features classifies rBT from RN with an area under the curve (AUC) of 0.892±0.055. Moreover, considering the dependence between survival time and censoring time (where patients are not followed up until death), the feasibility of using MRF radiomic features as a non-invasive biomarker to identify patients who are at higher risk of recurrence or radiation necrosis is demonstrated. The cross-validated results show that the MRF model provides the best overall survival prediction with an AUC of 0.77±0.032. Comparison with state-of-the-art methods suggest the proposed method is effective in RN versus rBT classification and patient survivability prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
木木雨发布了新的文献求助10
1秒前
鬲木发布了新的文献求助10
1秒前
mao12wang发布了新的文献求助10
1秒前
L坨坨完成签到 ,获得积分10
1秒前
耿强发布了新的文献求助10
1秒前
jmy发布了新的文献求助10
2秒前
科研小黑子完成签到,获得积分20
2秒前
2秒前
苏尔完成签到,获得积分10
2秒前
2秒前
浅墨完成签到 ,获得积分10
2秒前
mony完成签到,获得积分10
2秒前
3秒前
3秒前
huizi发布了新的文献求助10
3秒前
4秒前
菠萝冰棒发布了新的文献求助10
4秒前
4秒前
请叫我风吹麦浪完成签到,获得积分0
4秒前
清爽雪枫发布了新的文献求助10
5秒前
5秒前
5秒前
李健应助斜杠武采纳,获得10
6秒前
fengxj完成签到 ,获得积分10
6秒前
6秒前
6秒前
七七给七七的求助进行了留言
6秒前
7秒前
7秒前
Hello应助冷静的平安采纳,获得10
7秒前
FKVB_完成签到 ,获得积分10
8秒前
饼饼完成签到,获得积分10
8秒前
天天快乐应助木木采纳,获得10
8秒前
艺玲发布了新的文献求助10
8秒前
大气飞丹发布了新的文献求助10
8秒前
丫丫完成签到,获得积分10
9秒前
科研通AI2S应助觅桃乌龙采纳,获得10
9秒前
耿强完成签到,获得积分10
9秒前
wanci应助dd采纳,获得10
10秒前
汉堡包应助cuihl123采纳,获得10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759