Brain Tumor Recurrence vs. Radiation Necrosis Classification and Patient Survivability Prediction

生存能力 放射治疗 医学 计算机科学 放射科 计算机网络
作者
M. S. Sadique,Walia Farzana,A. Temtam,E. Lappinen,Arastoo Vossough,Khan M. Iftekharuddin
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-11
标识
DOI:10.1109/jbhi.2024.3406256
摘要

GB (Glioblastoma WHO Grade 4) is the most aggressive type of brain tumor in adults that has a short survival rate even after aggressive treatment with surgery and radiation therapy. The changes in magnetic resonance imaging (MRI) for patients with GB after radiotherapy are indicative of either radiation-induced necrosis (RN) or recurrent brain tumor (rBT). Screening for rBT and RN at an early stage is crucial for facilitating faster treatment and better outcomes for the patients. Differentiating rBT from RN is challenging as both may present with similar radiological and clinical characteristics on MRI. Moreover, learning-based rBT versus RN classification using MRI may suffer from class imbalance due to a lack of patient data. While synthetic data generation using generative models has shown promise to address class imbalances, the underlying data representation may be different in synthetic or augmented data. This study proposes computational modeling with statistically rigorous repeated random sub-sampling to balance the subset sample size for rBT and RN classification. The proposed pipeline includes multiresolution radiomic feature (MRF) extraction followed by feature selection with statistical significance testing (p<0.05). The five-fold cross validation results show the proposed model with MRF features classifies rBT from RN with an area under the curve (AUC) of 0.892±0.055. Moreover, considering the dependence between survival time and censoring time (where patients are not followed up until death), the feasibility of using MRF radiomic features as a non-invasive biomarker to identify patients who are at higher risk of recurrence or radiation necrosis is demonstrated. The cross-validated results show that the MRF model provides the best overall survival prediction with an AUC of 0.77±0.032. Comparison with state-of-the-art methods suggest the proposed method is effective in RN versus rBT classification and patient survivability prediction.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
曾无忧完成签到,获得积分10
1秒前
2秒前
孙靖博发布了新的文献求助10
2秒前
XpenG完成签到,获得积分10
2秒前
爆米花应助黄小雨采纳,获得10
4秒前
Dasha完成签到,获得积分10
4秒前
曾无忧发布了新的文献求助10
4秒前
大个应助flipped采纳,获得10
4秒前
NexusExplorer应助baibai采纳,获得10
5秒前
song_song完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
6秒前
ttt完成签到,获得积分20
7秒前
iceeer完成签到,获得积分10
7秒前
香蕉觅云应助会举重的树采纳,获得10
8秒前
LYW完成签到,获得积分10
8秒前
云山枫叶完成签到,获得积分10
9秒前
9秒前
147关闭了147文献求助
9秒前
雪儿完成签到,获得积分10
9秒前
王梓磬完成签到,获得积分10
10秒前
10秒前
11秒前
小马哥完成签到,获得积分10
12秒前
12秒前
lixoii完成签到 ,获得积分10
12秒前
暗香完成签到,获得积分10
13秒前
wp4455777完成签到,获得积分10
13秒前
LEO2025完成签到,获得积分10
13秒前
ztayx完成签到 ,获得积分10
14秒前
lulu完成签到,获得积分10
14秒前
爱吃泡芙完成签到,获得积分10
15秒前
zxy14完成签到,获得积分10
15秒前
79完成签到,获得积分10
15秒前
16秒前
16秒前
16秒前
wy完成签到,获得积分10
17秒前
yyy发布了新的文献求助10
17秒前
Ava应助唠叨的白曼采纳,获得10
17秒前
黄小雨完成签到,获得积分10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5765152
求助须知:如何正确求助?哪些是违规求助? 5559177
关于积分的说明 15407489
捐赠科研通 4900018
什么是DOI,文献DOI怎么找? 2636146
邀请新用户注册赠送积分活动 1584366
关于科研通互助平台的介绍 1539609