Brain Tumor Recurrence vs. Radiation Necrosis Classification and Patient Survivability Prediction

生存能力 放射治疗 医学 计算机科学 放射科 计算机网络
作者
M. S. Sadique,Walia Farzana,A. Temtam,E. Lappinen,Arastoo Vossough,Khan M. Iftekharuddin
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-11
标识
DOI:10.1109/jbhi.2024.3406256
摘要

GB (Glioblastoma WHO Grade 4) is the most aggressive type of brain tumor in adults that has a short survival rate even after aggressive treatment with surgery and radiation therapy. The changes in magnetic resonance imaging (MRI) for patients with GB after radiotherapy are indicative of either radiation-induced necrosis (RN) or recurrent brain tumor (rBT). Screening for rBT and RN at an early stage is crucial for facilitating faster treatment and better outcomes for the patients. Differentiating rBT from RN is challenging as both may present with similar radiological and clinical characteristics on MRI. Moreover, learning-based rBT versus RN classification using MRI may suffer from class imbalance due to a lack of patient data. While synthetic data generation using generative models has shown promise to address class imbalances, the underlying data representation may be different in synthetic or augmented data. This study proposes computational modeling with statistically rigorous repeated random sub-sampling to balance the subset sample size for rBT and RN classification. The proposed pipeline includes multiresolution radiomic feature (MRF) extraction followed by feature selection with statistical significance testing (p<0.05). The five-fold cross validation results show the proposed model with MRF features classifies rBT from RN with an area under the curve (AUC) of 0.892±0.055. Moreover, considering the dependence between survival time and censoring time (where patients are not followed up until death), the feasibility of using MRF radiomic features as a non-invasive biomarker to identify patients who are at higher risk of recurrence or radiation necrosis is demonstrated. The cross-validated results show that the MRF model provides the best overall survival prediction with an AUC of 0.77±0.032. Comparison with state-of-the-art methods suggest the proposed method is effective in RN versus rBT classification and patient survivability prediction.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小瑞完成签到,获得积分10
1秒前
开心蛋挞完成签到,获得积分10
1秒前
九局下半发布了新的文献求助10
2秒前
EVEN发布了新的文献求助10
2秒前
那你也完成签到,获得积分10
3秒前
顾矜应助Ernest采纳,获得30
4秒前
无花果应助北落采纳,获得10
4秒前
酷波er应助房天川采纳,获得20
5秒前
稳重盼夏完成签到,获得积分20
5秒前
CCMay发布了新的文献求助20
5秒前
万能图书馆应助Pendulium采纳,获得10
6秒前
科目三应助杨立胜采纳,获得10
6秒前
zzz完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
6秒前
6秒前
慕青应助古木采纳,获得10
7秒前
8秒前
懦弱的沛芹完成签到,获得积分10
9秒前
10秒前
天天快乐应助霸气的南晴采纳,获得10
10秒前
爱学习的叭叭完成签到,获得积分10
10秒前
桐桐应助han采纳,获得10
11秒前
future发布了新的文献求助10
11秒前
miao完成签到,获得积分10
11秒前
ieeat发布了新的文献求助10
13秒前
13秒前
13秒前
小二郎应助PP采纳,获得10
14秒前
洛绮云完成签到,获得积分10
14秒前
英吉利25发布了新的文献求助10
15秒前
orixero应助许xu采纳,获得10
15秒前
ZZJ111发布了新的文献求助20
15秒前
乐辰发布了新的文献求助10
15秒前
16秒前
16秒前
量子星尘发布了新的文献求助30
16秒前
糖不太甜完成签到,获得积分10
17秒前
EVEN发布了新的文献求助10
17秒前
18秒前
科研欣路完成签到,获得积分10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5717982
求助须知:如何正确求助?哪些是违规求助? 5249617
关于积分的说明 15284035
捐赠科研通 4868135
什么是DOI,文献DOI怎么找? 2614009
邀请新用户注册赠送积分活动 1563957
关于科研通互助平台的介绍 1521400