Brain Tumor Recurrence vs. Radiation Necrosis Classification and Patient Survivability Prediction

生存能力 放射治疗 医学 计算机科学 放射科 计算机网络
作者
M. S. Sadique,Walia Farzana,A. Temtam,E. Lappinen,Arastoo Vossough,Khan M. Iftekharuddin
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-11
标识
DOI:10.1109/jbhi.2024.3406256
摘要

GB (Glioblastoma WHO Grade 4) is the most aggressive type of brain tumor in adults that has a short survival rate even after aggressive treatment with surgery and radiation therapy. The changes in magnetic resonance imaging (MRI) for patients with GB after radiotherapy are indicative of either radiation-induced necrosis (RN) or recurrent brain tumor (rBT). Screening for rBT and RN at an early stage is crucial for facilitating faster treatment and better outcomes for the patients. Differentiating rBT from RN is challenging as both may present with similar radiological and clinical characteristics on MRI. Moreover, learning-based rBT versus RN classification using MRI may suffer from class imbalance due to a lack of patient data. While synthetic data generation using generative models has shown promise to address class imbalances, the underlying data representation may be different in synthetic or augmented data. This study proposes computational modeling with statistically rigorous repeated random sub-sampling to balance the subset sample size for rBT and RN classification. The proposed pipeline includes multiresolution radiomic feature (MRF) extraction followed by feature selection with statistical significance testing (p<0.05). The five-fold cross validation results show the proposed model with MRF features classifies rBT from RN with an area under the curve (AUC) of 0.892±0.055. Moreover, considering the dependence between survival time and censoring time (where patients are not followed up until death), the feasibility of using MRF radiomic features as a non-invasive biomarker to identify patients who are at higher risk of recurrence or radiation necrosis is demonstrated. The cross-validated results show that the MRF model provides the best overall survival prediction with an AUC of 0.77±0.032. Comparison with state-of-the-art methods suggest the proposed method is effective in RN versus rBT classification and patient survivability prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
smile发布了新的文献求助10
刚刚
kento驳回了qgyj应助
1秒前
小二郎应助科研通管家采纳,获得10
3秒前
英姑应助科研通管家采纳,获得10
3秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
遥远的尧应助科研通管家采纳,获得10
3秒前
脑洞疼应助科研通管家采纳,获得10
3秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
3秒前
奋斗枫应助科研通管家采纳,获得20
4秒前
脑洞疼应助科研通管家采纳,获得10
4秒前
CipherSage应助科研通管家采纳,获得10
4秒前
所所应助科研通管家采纳,获得10
4秒前
4秒前
yang完成签到,获得积分10
5秒前
善学以致用应助无奈薯片采纳,获得10
9秒前
啵清啵发布了新的文献求助10
10秒前
11秒前
12秒前
13秒前
搞怪哑铃发布了新的文献求助10
13秒前
13秒前
科研通AI2S应助nove999采纳,获得10
13秒前
隐形曼青应助专注的小蕾采纳,获得10
13秒前
13秒前
KLM发布了新的文献求助10
15秒前
Hayat应助熹熹采纳,获得10
16秒前
18秒前
19秒前
selena完成签到,获得积分10
20秒前
JamesPei应助atcha采纳,获得10
21秒前
nyc关注了科研通微信公众号
22秒前
kokocrl完成签到,获得积分10
22秒前
能干幼珊发布了新的文献求助10
23秒前
热塑性哈士奇完成签到,获得积分10
23秒前
852应助smile采纳,获得10
24秒前
骆十八完成签到,获得积分10
25秒前
细腻的雅山完成签到 ,获得积分10
29秒前
29秒前
意义完成签到,获得积分20
29秒前
高分求助中
Evolution 10000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
The Kinetic Nitration and Basicity of 1,2,4-Triazol-5-ones 440
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3164260
求助须知:如何正确求助?哪些是违规求助? 2815000
关于积分的说明 7907415
捐赠科研通 2474608
什么是DOI,文献DOI怎么找? 1317598
科研通“疑难数据库(出版商)”最低求助积分说明 631857
版权声明 602228