Brain Tumor Recurrence vs. Radiation Necrosis Classification and Patient Survivability Prediction

生存能力 放射治疗 医学 计算机科学 放射科 计算机网络
作者
M. S. Sadique,Walia Farzana,A. Temtam,E. Lappinen,Arastoo Vossough,Khan M. Iftekharuddin
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-11
标识
DOI:10.1109/jbhi.2024.3406256
摘要

GB (Glioblastoma WHO Grade 4) is the most aggressive type of brain tumor in adults that has a short survival rate even after aggressive treatment with surgery and radiation therapy. The changes in magnetic resonance imaging (MRI) for patients with GB after radiotherapy are indicative of either radiation-induced necrosis (RN) or recurrent brain tumor (rBT). Screening for rBT and RN at an early stage is crucial for facilitating faster treatment and better outcomes for the patients. Differentiating rBT from RN is challenging as both may present with similar radiological and clinical characteristics on MRI. Moreover, learning-based rBT versus RN classification using MRI may suffer from class imbalance due to a lack of patient data. While synthetic data generation using generative models has shown promise to address class imbalances, the underlying data representation may be different in synthetic or augmented data. This study proposes computational modeling with statistically rigorous repeated random sub-sampling to balance the subset sample size for rBT and RN classification. The proposed pipeline includes multiresolution radiomic feature (MRF) extraction followed by feature selection with statistical significance testing (p<0.05). The five-fold cross validation results show the proposed model with MRF features classifies rBT from RN with an area under the curve (AUC) of 0.892±0.055. Moreover, considering the dependence between survival time and censoring time (where patients are not followed up until death), the feasibility of using MRF radiomic features as a non-invasive biomarker to identify patients who are at higher risk of recurrence or radiation necrosis is demonstrated. The cross-validated results show that the MRF model provides the best overall survival prediction with an AUC of 0.77±0.032. Comparison with state-of-the-art methods suggest the proposed method is effective in RN versus rBT classification and patient survivability prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
万能图书馆应助北大街采纳,获得10
刚刚
领导范儿应助友人a采纳,获得10
1秒前
2秒前
ttong发布了新的文献求助10
2秒前
小施发布了新的文献求助10
2秒前
爽o完成签到,获得积分10
3秒前
曾经的丹彤完成签到,获得积分10
3秒前
甜蜜花发布了新的文献求助15
3秒前
李爱国应助赵卓310采纳,获得10
3秒前
badmf完成签到,获得积分10
3秒前
未完成完成签到,获得积分10
4秒前
巴图鲁完成签到,获得积分10
4秒前
changliu发布了新的文献求助50
4秒前
Micro_A应助聪慧的天思采纳,获得10
4秒前
GG发布了新的文献求助10
4秒前
5秒前
5秒前
Ava应助猫咪采纳,获得10
5秒前
5秒前
Owen应助低空飞行采纳,获得10
5秒前
annie发布了新的文献求助10
6秒前
6秒前
哒哒完成签到,获得积分10
6秒前
ayuelei发布了新的文献求助10
6秒前
奥特曼发布了新的文献求助10
6秒前
烂漫的水彤完成签到,获得积分10
6秒前
hhhhxxxx完成签到,获得积分10
6秒前
十月木樨完成签到,获得积分10
6秒前
6秒前
7秒前
8秒前
白日梦想家完成签到 ,获得积分10
8秒前
wujingshuai完成签到,获得积分10
9秒前
沉默的驳完成签到 ,获得积分10
9秒前
9秒前
pluto应助缥缈的妙竹采纳,获得10
9秒前
上喜阿蕾完成签到,获得积分10
10秒前
拉长的傲旋完成签到,获得积分10
10秒前
11秒前
HJY发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
Electrochemistry: Volume 17 600
La cage des méridiens. La littérature et l’art contemporain face à la globalisation 577
SOLUTIONS Adhesive restoration techniques restorative and integrated surgical procedures 500
Energy-Size Reduction Relationships In Comminution 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4953577
求助须知:如何正确求助?哪些是违规求助? 4216141
关于积分的说明 13117378
捐赠科研通 3998227
什么是DOI,文献DOI怎么找? 2188234
邀请新用户注册赠送积分活动 1203471
关于科研通互助平台的介绍 1116040