纺纱
碳纳米管
材料科学
纳米技术
复合材料
纤维
作者
Zhicheng Yang,Yinan Yang,Yufei Huang,Yanyan Shao,Hao He,Shendong Yao,Qiqing Xi,Yinben Guo,Lianming Tong,Muqiang Jian,Yuanlong Shao,Jin Zhang
摘要
ABSTRACT Owing to the intrinsic excellent mechanical, electrical, and thermal properties of carbon nanotubes (CNTs), carbon nanotube fibers (CNTFs) have been expected to become promising candidates for the next-generation of high-performance fibers. They have received considerable interest for cutting-edge applications, such as ultra-light electric wire, aerospace craft, military equipment, and space elevators. Wet-spinning is a broadly utilized commercial technique for high-performance fiber manufacturing. Thus, compared with array spinning from drawable CNTs vertical array and direct dry spinning from floating catalyst chemical vapor deposition (FCCVD), the wet-spinning technique is considered to be a promising strategy to realize the production of CNTFs on a large scale. In this tutorial review, we begin with a summative description of CNTFs wet-spinning process. Then, we discuss the high-concentration CNTs wet-spinning dope preparation strategies and corresponding non-covalent adsorption/charge transfer mechanisms. The filament solidification during the coagulation process is another critical procedure for determining the configurations and properties for derived CNTFs. Next, we discuss post-treatment, including continuous drafting and thermal annealing, to further optimize the CNTs orientation and compact configuration. Finally, we summarize the physical property-structure relationship to give insights for further performance promotion in order to satisfy the prerequisite for detailed application. Insights into propelling high-performance CNTFs production from lab-scale to industry-scale are proposed, in anticipation of this novel fiber having an impact on our lives in the near future.
科研通智能强力驱动
Strongly Powered by AbleSci AI