Advanced Knee Osteoarthritis Detection using Deep Learning

骨关节炎 计算机科学 人工智能 深度学习 医学 替代医学 病理
作者
Chetlapalli Amritha Krishna,R. Bhuvaneswari
标识
DOI:10.1109/i2ct61223.2024.10543594
摘要

This present research investigates the use of machine learning and deep learning models for the detection of knee osteoarthritis using the X-Ray images in depth. knee osteoarthritis is one of the most common joint disorders which affects numerous percentages of people across the world. And its detection of it at an early stage is very critical for effective management. This paper presents valuable dataset of X-ray images with a dual focus on detection of knee joint and KellgrenLawrence grading [kl]. The methodology which is proposed in this paper includes basic steps such as data loading and preprocessing. It also includes feature extraction and utilization of models of both machine and deep learning. In the phase of machine learning models which are used are Decision tree, KNN, MLP, Random Forest and ensemble methods. While in deep learning models used for evaluation are Nasnetmobile, VGG19, Darknet53, Darknet19 and Googlenet. The output of all the above-mentioned models are compared and evaluated based on four most important metrics of performance. The final output of the research shows that Random Forest and the Ensemble methods have outperformed in the phase of machine learning and when it comes to deep learning Googlenet and Darknet53 have done well in comparison. This study helps in the early detection of the knee osteoarthritis and also helps in management of it by giving valuable insights to medical practitioners and researchers.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
桃铁完成签到,获得积分10
2秒前
4秒前
5秒前
9秒前
善学以致用应助h'c'z采纳,获得10
9秒前
WW完成签到,获得积分20
10秒前
11秒前
Ann发布了新的文献求助10
12秒前
YCD完成签到,获得积分20
13秒前
Rui完成签到,获得积分10
15秒前
畅快的枫完成签到,获得积分10
15秒前
橙色小瓶子完成签到,获得积分10
16秒前
gonna完成签到,获得积分10
18秒前
20秒前
Rubisco完成签到,获得积分10
20秒前
细心老头完成签到,获得积分10
22秒前
RJC发布了新的文献求助20
23秒前
Ann完成签到,获得积分10
28秒前
隐形曼青应助zh采纳,获得10
28秒前
Yimi刘博完成签到 ,获得积分10
29秒前
帅气之槐发布了新的文献求助10
29秒前
白日幻想家完成签到 ,获得积分10
29秒前
称心胡萝卜完成签到,获得积分20
30秒前
An发布了新的文献求助10
31秒前
33秒前
CipherSage应助帅气之槐采纳,获得10
37秒前
wanci应助科研通管家采纳,获得10
37秒前
小二郎应助科研通管家采纳,获得10
37秒前
kingwill应助科研通管家采纳,获得20
38秒前
爆米花应助科研通管家采纳,获得10
38秒前
38秒前
Orange应助科研通管家采纳,获得10
38秒前
38秒前
38秒前
慕青应助科研通管家采纳,获得30
38秒前
38秒前
华仔应助Tepid采纳,获得10
38秒前
Lsy完成签到,获得积分10
38秒前
细心老头发布了新的文献求助10
39秒前
44秒前
高分求助中
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 550
临床微生物检验问与答 (第二版), 人民卫生出版社, 2014:146 500
Green building development for a sustainable environment with artificial intelligence technology 500
Zeitschrift für Orient-Archäologie 500
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
Play from birth to twelve: Contexts, perspectives, and meanings – 3rd Edition 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3350975
求助须知:如何正确求助?哪些是违规求助? 2976530
关于积分的说明 8675444
捐赠科研通 2657683
什么是DOI,文献DOI怎么找? 1455204
科研通“疑难数据库(出版商)”最低求助积分说明 673739
邀请新用户注册赠送积分活动 664242