亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Machine Learning Algorithms for Smart Gas Sensor Arrays

计算机科学 人工智能 机器学习
作者
Vishnu Nath,Somalapura Prakasha Bharath,Aaron D’Souza,S. Angappane
出处
期刊:Advanced structured materials 卷期号:: 185-225
标识
DOI:10.1007/978-981-97-1390-5_8
摘要

Recently, the growth of technologies has resulted in many advancements in the field of gas sensing, one of which is the concept of an electronic nose (known as e-nose) that mimics the olfactory system in the mammalian nose. The e-nose system is developed from a set of gas sensors; however, the notion of the e-nose becomes complete only when the idea of a machine learning (ML) algorithm is implemented. This is because ML algorithms precisely control the e-nose by analyzing the sensor array output data. The development of ML techniques facilitates the analysis of massive volumes of data generated from sensor arrays in the presence of different analyte gases and environmental factors (temperature, humidity, etc.) and then helps to introduce a smart sensor system for various applications. The recent progress in ML techniques has not only simplified the complexity of data from sensor arrays but also improved the potential of e-nose systems by enabling them to accurately classify and predict the type of analyte gas molecules and their concentration. Modern e-nose systems are substantially superior to animal noses since they can predict gas molecule concentrations and detect odorless gases. Therefore, in addition to focusing on material selection and sensor fabrication, it is critical to understand the progress in ML techniques and their impact on the field of gas sensing. Unfortunately, there are very few articles to explain the studies based on ML algorithms and their potential for developing an e-nose system. Herein, a comprehensive review of the ML algorithms and their role in developing an e-nose system is presented. This chapter begins with a journey of ML algorithms such as supervised, unsupervised, and neural network algorithms that are relevant to developing e-nose and discusses the basic idea of each algorithm. Then subsequent sections provide an overview of the role of different ML algorithms in the e-nose system used for various practical applications, including environmental monitoring, food processing, and disease diagnosis. Finally, an outlook on the challenges in employing ML algorithms in e-nose systems and their current progress is discussed.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jerry完成签到,获得积分10
6秒前
yy完成签到,获得积分10
17秒前
17秒前
19秒前
19秒前
doctor2023完成签到,获得积分10
19秒前
余额不足发布了新的文献求助10
22秒前
十六发布了新的文献求助10
24秒前
yyds完成签到,获得积分10
28秒前
37秒前
37秒前
37秒前
37秒前
上官发布了新的文献求助10
40秒前
41秒前
哎健身完成签到 ,获得积分10
41秒前
抱抱龙完成签到 ,获得积分10
42秒前
上官发布了新的文献求助10
42秒前
上官发布了新的文献求助10
42秒前
上官发布了新的文献求助10
42秒前
上官发布了新的文献求助10
43秒前
上官发布了新的文献求助10
43秒前
天天快乐应助遇见馅儿饼采纳,获得10
44秒前
上官发布了新的文献求助10
44秒前
上官发布了新的文献求助30
44秒前
上官发布了新的文献求助10
44秒前
44秒前
loujiafei完成签到,获得积分20
45秒前
48秒前
50秒前
54秒前
二井发布了新的文献求助10
54秒前
55秒前
loujiafei发布了新的文献求助30
58秒前
1分钟前
YOLO完成签到,获得积分10
1分钟前
田様应助loujiafei采纳,获得10
1分钟前
1分钟前
FashionBoy应助遇见馅儿饼采纳,获得10
1分钟前
懒癌晚期发布了新的文献求助10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5590427
求助须知:如何正确求助?哪些是违规求助? 4674712
关于积分的说明 14795204
捐赠科研通 4631648
什么是DOI,文献DOI怎么找? 2532710
邀请新用户注册赠送积分活动 1501268
关于科研通互助平台的介绍 1468617