Machine Learning Algorithms for Smart Gas Sensor Arrays

计算机科学 人工智能 机器学习
作者
Vishnu Nath,Somalapura Prakasha Bharath,Aaron D’Souza,S. Angappane
出处
期刊:Advanced structured materials 卷期号:: 185-225
标识
DOI:10.1007/978-981-97-1390-5_8
摘要

Recently, the growth of technologies has resulted in many advancements in the field of gas sensing, one of which is the concept of an electronic nose (known as e-nose) that mimics the olfactory system in the mammalian nose. The e-nose system is developed from a set of gas sensors; however, the notion of the e-nose becomes complete only when the idea of a machine learning (ML) algorithm is implemented. This is because ML algorithms precisely control the e-nose by analyzing the sensor array output data. The development of ML techniques facilitates the analysis of massive volumes of data generated from sensor arrays in the presence of different analyte gases and environmental factors (temperature, humidity, etc.) and then helps to introduce a smart sensor system for various applications. The recent progress in ML techniques has not only simplified the complexity of data from sensor arrays but also improved the potential of e-nose systems by enabling them to accurately classify and predict the type of analyte gas molecules and their concentration. Modern e-nose systems are substantially superior to animal noses since they can predict gas molecule concentrations and detect odorless gases. Therefore, in addition to focusing on material selection and sensor fabrication, it is critical to understand the progress in ML techniques and their impact on the field of gas sensing. Unfortunately, there are very few articles to explain the studies based on ML algorithms and their potential for developing an e-nose system. Herein, a comprehensive review of the ML algorithms and their role in developing an e-nose system is presented. This chapter begins with a journey of ML algorithms such as supervised, unsupervised, and neural network algorithms that are relevant to developing e-nose and discusses the basic idea of each algorithm. Then subsequent sections provide an overview of the role of different ML algorithms in the e-nose system used for various practical applications, including environmental monitoring, food processing, and disease diagnosis. Finally, an outlook on the challenges in employing ML algorithms in e-nose systems and their current progress is discussed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
nwds发布了新的文献求助10
4秒前
4秒前
5秒前
韩冬冬发布了新的文献求助10
6秒前
jiajia发布了新的文献求助20
6秒前
6秒前
7秒前
搜集达人应助忽忽采纳,获得10
7秒前
9秒前
9秒前
ww发布了新的文献求助10
10秒前
小小猪发布了新的文献求助10
10秒前
10秒前
11秒前
12秒前
12秒前
Y哦莫哦莫发布了新的文献求助10
13秒前
halo发布了新的文献求助20
14秒前
XC发布了新的文献求助10
14秒前
14秒前
14秒前
134发布了新的文献求助10
18秒前
CodeCraft应助活力的听露采纳,获得10
19秒前
JUll完成签到,获得积分10
19秒前
不配.应助冉柒采纳,获得20
20秒前
小丸子完成签到,获得积分10
24秒前
mlzmlz发布了新的文献求助10
25秒前
wangby1984发布了新的文献求助10
26秒前
思源应助丢丢采纳,获得10
30秒前
李爱国应助愤怒的水壶采纳,获得10
30秒前
30秒前
zoe发布了新的文献求助10
30秒前
33秒前
心空完成签到,获得积分10
33秒前
李佳唯关注了科研通微信公众号
35秒前
37秒前
冉柒完成签到,获得积分10
37秒前
37秒前
39秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3136781
求助须知:如何正确求助?哪些是违规求助? 2787825
关于积分的说明 7783217
捐赠科研通 2443872
什么是DOI,文献DOI怎么找? 1299466
科研通“疑难数据库(出版商)”最低求助积分说明 625457
版权声明 600954