Machine Learning Algorithms for Smart Gas Sensor Arrays

计算机科学 人工智能 机器学习
作者
Vishnu Nath,Somalapura Prakasha Bharath,Aaron D’Souza,S. Angappane
出处
期刊:Advanced structured materials 卷期号:: 185-225
标识
DOI:10.1007/978-981-97-1390-5_8
摘要

Recently, the growth of technologies has resulted in many advancements in the field of gas sensing, one of which is the concept of an electronic nose (known as e-nose) that mimics the olfactory system in the mammalian nose. The e-nose system is developed from a set of gas sensors; however, the notion of the e-nose becomes complete only when the idea of a machine learning (ML) algorithm is implemented. This is because ML algorithms precisely control the e-nose by analyzing the sensor array output data. The development of ML techniques facilitates the analysis of massive volumes of data generated from sensor arrays in the presence of different analyte gases and environmental factors (temperature, humidity, etc.) and then helps to introduce a smart sensor system for various applications. The recent progress in ML techniques has not only simplified the complexity of data from sensor arrays but also improved the potential of e-nose systems by enabling them to accurately classify and predict the type of analyte gas molecules and their concentration. Modern e-nose systems are substantially superior to animal noses since they can predict gas molecule concentrations and detect odorless gases. Therefore, in addition to focusing on material selection and sensor fabrication, it is critical to understand the progress in ML techniques and their impact on the field of gas sensing. Unfortunately, there are very few articles to explain the studies based on ML algorithms and their potential for developing an e-nose system. Herein, a comprehensive review of the ML algorithms and their role in developing an e-nose system is presented. This chapter begins with a journey of ML algorithms such as supervised, unsupervised, and neural network algorithms that are relevant to developing e-nose and discusses the basic idea of each algorithm. Then subsequent sections provide an overview of the role of different ML algorithms in the e-nose system used for various practical applications, including environmental monitoring, food processing, and disease diagnosis. Finally, an outlook on the challenges in employing ML algorithms in e-nose systems and their current progress is discussed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
略略略完成签到,获得积分20
3秒前
清风发布了新的文献求助10
5秒前
6秒前
迷人素发布了新的文献求助30
6秒前
7秒前
momomo应助xx采纳,获得10
8秒前
冷酷太清完成签到,获得积分10
9秒前
等待的金毛完成签到,获得积分10
9秒前
有魅力乌完成签到,获得积分10
9秒前
9秒前
10秒前
共享精神应助舒淇采纳,获得30
11秒前
12秒前
水清木华发布了新的文献求助40
12秒前
13秒前
13秒前
充电宝应助谦让含玉采纳,获得10
13秒前
14秒前
Jole发布了新的文献求助10
14秒前
NexusExplorer应助迷人素采纳,获得30
15秒前
夏傥完成签到,获得积分10
16秒前
17秒前
OSMSO发布了新的文献求助10
17秒前
木木发布了新的文献求助10
17秒前
17秒前
林三一发布了新的文献求助10
18秒前
sys完成签到,获得积分10
18秒前
19秒前
ALDRC完成签到,获得积分10
20秒前
完美世界应助活力的语堂采纳,获得10
20秒前
21秒前
22秒前
共享精神应助Chen272采纳,获得10
23秒前
HEISITATION发布了新的文献求助10
23秒前
23秒前
Rondab应助包容的忆灵采纳,获得10
23秒前
无花果应助xxx采纳,获得10
24秒前
25秒前
小太阳完成签到,获得积分10
25秒前
七友完成签到,获得积分10
26秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3991995
求助须知:如何正确求助?哪些是违规求助? 3533077
关于积分的说明 11260801
捐赠科研通 3272413
什么是DOI,文献DOI怎么找? 1805820
邀请新用户注册赠送积分活动 882665
科研通“疑难数据库(出版商)”最低求助积分说明 809425