亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Machine Learning Algorithms for Smart Gas Sensor Arrays

计算机科学 人工智能 机器学习
作者
Vishnu G. Nath,Somalapura Prakasha Bharath,Anusha Dsouza,S. Angappane
出处
期刊:Advanced structured materials 卷期号:: 185-225 被引量:5
标识
DOI:10.1007/978-981-97-1390-5_8
摘要

Recently, the growth of technologies has resulted in many advancements in the field of gas sensing, one of which is the concept of an electronic nose (known as e-nose) that mimics the olfactory system in the mammalian nose. The e-nose system is developed from a set of gas sensors; however, the notion of the e-nose becomes complete only when the idea of a machine learning (ML) algorithm is implemented. This is because ML algorithms precisely control the e-nose by analyzing the sensor array output data. The development of ML techniques facilitates the analysis of massive volumes of data generated from sensor arrays in the presence of different analyte gases and environmental factors (temperature, humidity, etc.) and then helps to introduce a smart sensor system for various applications. The recent progress in ML techniques has not only simplified the complexity of data from sensor arrays but also improved the potential of e-nose systems by enabling them to accurately classify and predict the type of analyte gas molecules and their concentration. Modern e-nose systems are substantially superior to animal noses since they can predict gas molecule concentrations and detect odorless gases. Therefore, in addition to focusing on material selection and sensor fabrication, it is critical to understand the progress in ML techniques and their impact on the field of gas sensing. Unfortunately, there are very few articles to explain the studies based on ML algorithms and their potential for developing an e-nose system. Herein, a comprehensive review of the ML algorithms and their role in developing an e-nose system is presented. This chapter begins with a journey of ML algorithms such as supervised, unsupervised, and neural network algorithms that are relevant to developing e-nose and discusses the basic idea of each algorithm. Then subsequent sections provide an overview of the role of different ML algorithms in the e-nose system used for various practical applications, including environmental monitoring, food processing, and disease diagnosis. Finally, an outlook on the challenges in employing ML algorithms in e-nose systems and their current progress is discussed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
YVO4完成签到 ,获得积分10
12秒前
22秒前
26秒前
31秒前
wanci应助好文章快快来采纳,获得10
45秒前
星辰大海应助铭铭采纳,获得10
1分钟前
1分钟前
Fluoxtine发布了新的文献求助10
1分钟前
lyw发布了新的文献求助10
1分钟前
1分钟前
BowieHuang应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
1分钟前
铭铭发布了新的文献求助10
1分钟前
herococa完成签到,获得积分0
1分钟前
是谁还没睡完成签到 ,获得积分10
1分钟前
Fluoxtine发布了新的文献求助10
2分钟前
学术交流高完成签到 ,获得积分10
2分钟前
凡舍完成签到 ,获得积分10
2分钟前
搜集达人应助dawn采纳,获得10
2分钟前
2分钟前
dawn完成签到,获得积分20
2分钟前
dawn发布了新的文献求助10
2分钟前
3分钟前
汉堡包应助Fluoxtine采纳,获得10
3分钟前
xixi发布了新的文献求助10
3分钟前
丘比特应助科研通管家采纳,获得10
3分钟前
FashionBoy应助科研通管家采纳,获得10
3分钟前
汉堡包应助科研通管家采纳,获得10
3分钟前
慕青应助科研通管家采纳,获得10
3分钟前
kuoping完成签到,获得积分0
3分钟前
3分钟前
机灵自中完成签到,获得积分10
3分钟前
Stellarshi517发布了新的文献求助20
3分钟前
3分钟前
科研通AI6.1应助xixi采纳,获得10
3分钟前
lyw发布了新的文献求助10
3分钟前
田様应助Stellarshi517采纳,获得20
4分钟前
4分钟前
kuiuLinvk发布了新的文献求助10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Electron Energy Loss Spectroscopy 1500
Tip-in balloon grenadoplasty for uncrossable chronic total occlusions 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5788568
求助须知:如何正确求助?哪些是违规求助? 5709401
关于积分的说明 15473692
捐赠科研通 4916583
什么是DOI,文献DOI怎么找? 2646482
邀请新用户注册赠送积分活动 1594146
关于科研通互助平台的介绍 1548577