An approach for multi-depth soil moisture prediction in alfalfa based on a dual-branch combined model

含水量 对偶(语法数字) 土壤科学 环境科学 农业工程 水分 水文学(农业) 数学 工程类 岩土工程 气象学 地理 文学类 艺术
作者
Rui Liu,Li-Feng Lu,Yongqi Ge,Liguo Dong,Juan Zhou
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:222: 109038-109038 被引量:2
标识
DOI:10.1016/j.compag.2024.109038
摘要

Rainfall or irrigation induces substantial fluctuations in soil moisture at various depth. Improving the accuracy of multi-depth soil moisture prediction during these events is crucial for precision irrigation. This study proposes a dual-branch combined model for multi-depth soil moisture prediction in alfalfa (ALFSMP-DBCM). The model employs fully connected layers in the left branch to extract rainfall and irrigation features, while the right branch uses convolutional residual networks to model soil moisture relationships. The fusion of these branches enables effective multi-depth soil moisture prediction for alfalfa. Field experiments were designed and conducted in the Ningxia Irrigation Area of the Yellow River (NIR). A comprehensive dataset, comprising 19,763 data points on alfalfa growth environment in the different precipitation years (2017, 2018, and 2022), was established and utilized as model training data. Three classical deep learning models were employed for comparison. Results demonstrated that the ALFSMP-DBCM model effectively predicted multi-depth soil moisture during all alfalfa growth stages. The R2 of the model within the range of 0.911 to 0.992, with average MAE, MSE, and RMSE within the range of 0.29% to 0.58%, 0.22% to 0.56%, and 0.47% to 0.68%, respectively. Compared to the ANN, LSTM, and BiLSTM models, the ALFSMP-DBCM model improved the prediction accuracy of soil moisture at multi-depth by 7.19%, 11.90%, and 10.32%, respectively. The model exhibited robust performance under instantaneous water replenishment conditions and stability in predicting multi-depth soil moisture with different delay days. These findings provide a valuable reference for precision irrigation regulation and field management of alfalfa in arid and semi-arid regions.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阔达的凡儿完成签到,获得积分10
刚刚
junjun完成签到,获得积分10
2秒前
小蘑菇应助雪花采纳,获得10
2秒前
2秒前
qiaqiaqia完成签到,获得积分10
3秒前
3秒前
123567发布了新的文献求助10
4秒前
4秒前
kingJames发布了新的文献求助10
4秒前
田様应助niuniu采纳,获得10
6秒前
slugger发布了新的文献求助10
6秒前
遨游的人发布了新的文献求助10
6秒前
嘿嘿发布了新的文献求助10
7秒前
JamesPei应助宁宁宁12138采纳,获得10
7秒前
从容芮应助LSL采纳,获得50
7秒前
桐桐应助宁宁宁12138采纳,获得10
7秒前
小雅子发布了新的文献求助10
8秒前
CodeCraft应助slugger采纳,获得10
10秒前
10秒前
追寻的如冬完成签到 ,获得积分20
10秒前
12秒前
xmx发布了新的文献求助10
12秒前
An完成签到,获得积分10
12秒前
gying应助啦啦啦啦采纳,获得10
12秒前
13秒前
天天快乐应助科研通管家采纳,获得10
13秒前
13秒前
今后应助科研通管家采纳,获得10
13秒前
深情安青应助科研通管家采纳,获得10
13秒前
赘婿应助科研通管家采纳,获得10
13秒前
大模型应助科研通管家采纳,获得10
13秒前
CipherSage应助科研通管家采纳,获得10
13秒前
13秒前
kido发布了新的文献求助10
13秒前
13秒前
小二郎应助科研通管家采纳,获得10
13秒前
13秒前
共享精神应助科研通管家采纳,获得10
13秒前
13秒前
欢喜发布了新的文献求助10
13秒前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Agenda-setting and journalistic translation: The New York Times in English, Spanish and Chinese 1000
Les Mantodea de Guyane 1000
Very-high-order BVD Schemes Using β-variable THINC Method 950
Field Guide to Insects of South Africa 660
Foucault's Technologies Another Way of Cutting Reality 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3390914
求助须知:如何正确求助?哪些是违规求助? 3002274
关于积分的说明 8803046
捐赠科研通 2688870
什么是DOI,文献DOI怎么找? 1472803
科研通“疑难数据库(出版商)”最低求助积分说明 681163
邀请新用户注册赠送积分活动 673976