Ga-polymer dual interfacial layer modified Li metal for high-energy Li metal batteries

金属 材料科学 图层(电子) 双层 金属锂 聚合物 化学工程 对偶(语法数字) 复合材料 冶金 化学 电解质 电极 物理化学 工程类 艺术 文学类
作者
Shuyuan Xie,Shuang Yu,Yaolin Hou,Feilong Dong,Xinming Zhang,Hongjun Zheng,Haiming Xie,Ziping Wang,Yulong Liu
出处
期刊:Journal of energy storage [Elsevier]
卷期号:91: 112056-112056
标识
DOI:10.1016/j.est.2024.112056
摘要

Lithium metal is regarded as the ultimate anode material for its extremely exceptional theoretical capacity and low reduction potential. Unfortunately, its practical utility has been constrained by changings such as the formation of lithium dendrites, volume expansion resulting from host-free structure, and uncontrollable side reactions with electrolyte. To achieve long cycle life, conventional single artificial layer strategy fails to solve due to ununiform lithium deposition problem. Consequently, the adoption of dual interfacial layer on lithium metal has emerged as prevailing strategy. In this study, we present a design of dual interface protective layer that combines a Ga-based liquid metal with the organic polymer Poly (ethylene glycol) diacrylate (PEGDA). This innovative combination offers synergistic benefits, including alleviate the volume effect and suppressing undesired interface side reactions. In practical test, the Li || Li symmetrical cell assembled from PEGDA Li-Ga dual interfacial layer maintains a low overpotential of 36.8 mV after 1400 h (2 mA cm−2, 2mAh cm−2). Moreover, even at a high rate of 5C, Li || LiNi0.8Co0.1Mn0.1O2 (NCM811, 1.0 mAh cm−2) cell still delivers a discharge capacity of 120 mAh g1, 1.4 times higher than bare Li. Notably, when integrated into a pouch cell with a LiNi0.6Co0.2Mn0.2O2 (NCM622) cathode (1.52 mAh cm−2), this dual interface layers ensures stable performance over 60 cycles, with a capacity retention of 82 %. In summary, this innovative dual interface layer design offers a promising approach to address the intricate challenges associated with lithium metal protection and interface modification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
顾矜应助坚定的亦绿采纳,获得10
1秒前
1秒前
yu完成签到,获得积分10
1秒前
Chris完成签到,获得积分10
2秒前
cookie发布了新的文献求助10
3秒前
胖仔完成签到,获得积分10
3秒前
Chan0501完成签到,获得积分10
3秒前
4秒前
5秒前
5秒前
duxinyue发布了新的文献求助10
5秒前
汉堡转转转完成签到,获得积分10
6秒前
喵酱发布了新的文献求助30
6秒前
6666完成签到,获得积分10
6秒前
研友_VZG7GZ应助灵巧荆采纳,获得10
7秒前
wjn完成签到,获得积分10
7秒前
8秒前
竹子完成签到,获得积分10
8秒前
MAKEYF完成签到 ,获得积分10
8秒前
9秒前
Owen应助猪猪hero采纳,获得10
9秒前
10秒前
CipherSage应助海棠yiyi采纳,获得50
11秒前
Khr1stINK发布了新的文献求助10
11秒前
11秒前
脑洞疼应助卡卡采纳,获得10
11秒前
11秒前
Rrr发布了新的文献求助10
12秒前
科研通AI5应助zmy采纳,获得10
13秒前
William鉴哲发布了新的文献求助10
13秒前
情怀应助只道寻常采纳,获得10
14秒前
14秒前
cyy完成签到,获得积分20
14秒前
orixero应助小庄采纳,获得10
15秒前
16秒前
侦察兵发布了新的文献求助10
16秒前
司徒元瑶完成签到 ,获得积分10
16秒前
梓榆发布了新的文献求助10
16秒前
16秒前
sweetbearm应助通~采纳,获得10
16秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794