Hyperspectral image classification based on deep separable residual attention network

高光谱成像 残余物 计算机科学 可分离空间 人工智能 图像(数学) 模式识别(心理学) 遥感 计算机视觉 地质学 算法 数学 数学分析
作者
Chao Tu,Wanjun Liu,Linlin Zhao,Tinghao Yan
出处
期刊:Infrared Physics & Technology [Elsevier BV]
卷期号:140: 105401-105401 被引量:1
标识
DOI:10.1016/j.infrared.2024.105401
摘要

Hyperspectral image have rich spatial and spectral information, and how to fully extract and utilize the features of these two dimensions is a research hotspot in hyperspectral classification methods. At present, the unique convolutional operation and deep feature extraction structure of convolutional neural network enable them to have stronger feature representation capabilities and achieve good results in hyperspectral image classification. However, CNN methods do not assign different weights based on the importance of features in the feature extraction process, making it difficult to effectively utilize key features, and most importantly, using fixed shaped convolution kernel can easily overlook the differences between hyperspectral image features. A hyperspectral image classification method based on deep separable residual attention network is proposed to address the above issues. Firstly, to reduce the correlation between hyperspectral image data and minimize the interference of redundant information, principal component analysis is used to reduce the dimensionality of hyperspectral image. Secondly, a shallow feature extraction module is constructed, which can dynamically adjust the size of the receptive field according to the actual situation of the image, adaptively extract shallow features, and reduce the loss of original image features. Then, a depthwise separable residual attention mechanism module is proposed, based on which features are extracted. Starting from global and local features, contextual information on image features in channel and spatial domains is extracted. Finally, use a multi-scale feature fusion module to fully integrate feature maps at different scales. Using Indian Pines, Pavia University and Botswana as experimental datasets, the overall classification accuracy of this paper's method is 98.47 %, 98.70 %, 98.83 % with only 50, 50, 30 training samples per class. The Kappa coefficient is 98.25 %, 98.27 %, and 98.73 %, respectively. Compared with advanced methods, this method not only has higher classification accuracy, but also fully utilizes key features at various network levels.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
wisdom完成签到,获得积分10
2秒前
六月完成签到,获得积分10
2秒前
澡雪发布了新的文献求助10
3秒前
achen发布了新的文献求助10
3秒前
欣喜小松鼠完成签到,获得积分10
4秒前
5秒前
胡学宜发布了新的文献求助10
5秒前
6秒前
Dxxxt完成签到,获得积分10
6秒前
领导范儿应助晚来天欲雪采纳,获得10
7秒前
7秒前
眼睛大的尔蝶完成签到,获得积分10
7秒前
会飞的鱼发布了新的文献求助30
8秒前
9秒前
OULA!完成签到,获得积分10
9秒前
10秒前
10秒前
Shenliheng关注了科研通微信公众号
11秒前
zly发布了新的文献求助10
11秒前
量子星尘发布了新的文献求助30
11秒前
Ava应助miao2采纳,获得10
13秒前
OULA!发布了新的文献求助10
13秒前
14秒前
颜琪发布了新的文献求助10
14秒前
147发布了新的文献求助10
15秒前
简单宛秋发布了新的文献求助10
16秒前
18秒前
18秒前
枫之林发布了新的文献求助10
19秒前
科研通AI5应助寻123采纳,获得10
19秒前
爆米花应助哈哈哈哈哈采纳,获得10
20秒前
jie完成签到,获得积分10
21秒前
21秒前
拉长的灵煌完成签到,获得积分10
22秒前
22秒前
22秒前
忧虑的靖巧完成签到 ,获得积分10
23秒前
科研通AI5应助Hexagram采纳,获得10
23秒前
文汉天女完成签到,获得积分10
23秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Effective Learning and Mental Wellbeing 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3976126
求助须知:如何正确求助?哪些是违规求助? 3520340
关于积分的说明 11202586
捐赠科研通 3256847
什么是DOI,文献DOI怎么找? 1798509
邀请新用户注册赠送积分活动 877645
科研通“疑难数据库(出版商)”最低求助积分说明 806516