Hyperspectral image classification based on deep separable residual attention network

高光谱成像 残余物 计算机科学 可分离空间 人工智能 图像(数学) 模式识别(心理学) 遥感 计算机视觉 地质学 算法 数学 数学分析
作者
Chao Tu,Wanjun Liu,Linlin Zhao,Tinghao Yan
出处
期刊:Infrared Physics & Technology [Elsevier]
卷期号:140: 105401-105401 被引量:1
标识
DOI:10.1016/j.infrared.2024.105401
摘要

Hyperspectral image have rich spatial and spectral information, and how to fully extract and utilize the features of these two dimensions is a research hotspot in hyperspectral classification methods. At present, the unique convolutional operation and deep feature extraction structure of convolutional neural network enable them to have stronger feature representation capabilities and achieve good results in hyperspectral image classification. However, CNN methods do not assign different weights based on the importance of features in the feature extraction process, making it difficult to effectively utilize key features, and most importantly, using fixed shaped convolution kernel can easily overlook the differences between hyperspectral image features. A hyperspectral image classification method based on deep separable residual attention network is proposed to address the above issues. Firstly, to reduce the correlation between hyperspectral image data and minimize the interference of redundant information, principal component analysis is used to reduce the dimensionality of hyperspectral image. Secondly, a shallow feature extraction module is constructed, which can dynamically adjust the size of the receptive field according to the actual situation of the image, adaptively extract shallow features, and reduce the loss of original image features. Then, a depthwise separable residual attention mechanism module is proposed, based on which features are extracted. Starting from global and local features, contextual information on image features in channel and spatial domains is extracted. Finally, use a multi-scale feature fusion module to fully integrate feature maps at different scales. Using Indian Pines, Pavia University and Botswana as experimental datasets, the overall classification accuracy of this paper's method is 98.47 %, 98.70 %, 98.83 % with only 50, 50, 30 training samples per class. The Kappa coefficient is 98.25 %, 98.27 %, and 98.73 %, respectively. Compared with advanced methods, this method not only has higher classification accuracy, but also fully utilizes key features at various network levels.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
一一应助曾经的安珊采纳,获得30
1秒前
向春山完成签到,获得积分10
2秒前
自由可乐应助栾小翔采纳,获得30
2秒前
2秒前
Quitter发布了新的文献求助10
5秒前
5秒前
小小牛发布了新的文献求助10
7秒前
7秒前
8秒前
子车茗应助nothing采纳,获得30
8秒前
8秒前
junzhao完成签到,获得积分10
9秒前
向春山发布了新的文献求助10
9秒前
12秒前
小s发布了新的文献求助10
12秒前
13秒前
Quitter完成签到,获得积分20
14秒前
16秒前
16秒前
hzb发布了新的社区帖子
16秒前
huy发布了新的文献求助10
16秒前
17秒前
17秒前
18秒前
复杂的水彤完成签到 ,获得积分10
19秒前
wkjfh应助向春山采纳,获得10
19秒前
正能量发布了新的文献求助30
20秒前
23秒前
三岁发布了新的文献求助20
23秒前
思源应助哈哈采纳,获得10
23秒前
25秒前
25秒前
轻风完成签到,获得积分10
26秒前
天天快乐应助哈哈哈采纳,获得10
26秒前
ding应助邪恶小天使采纳,获得10
28秒前
大个应助纯真玉兰采纳,获得10
28秒前
qq发布了新的文献求助20
28秒前
桃之夭夭发布了新的文献求助10
29秒前
30秒前
高分求助中
The body in description of emotion: cross-linguistic studies 1000
Earth System Geophysics 1000
Co-opetition under Endogenous Bargaining Power 666
Medicina di laboratorio. Logica e patologia clinica 600
Sarcolestes leedsi Lydekker, an ankylosaurian dinosaur from the Middle Jurassic of England 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
Language injustice and social equity in EMI policies in China 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3212591
求助须知:如何正确求助?哪些是违规求助? 2861547
关于积分的说明 8129264
捐赠科研通 2527513
什么是DOI,文献DOI怎么找? 1361265
科研通“疑难数据库(出版商)”最低求助积分说明 643438
邀请新用户注册赠送积分活动 615776