Hyperspectral image classification based on deep separable residual attention network

高光谱成像 残余物 计算机科学 可分离空间 人工智能 图像(数学) 模式识别(心理学) 遥感 计算机视觉 地质学 算法 数学 数学分析
作者
Chao Tu,Wanjun Liu,Linlin Zhao,Tinghao Yan
出处
期刊:Infrared Physics & Technology [Elsevier]
卷期号:140: 105401-105401 被引量:1
标识
DOI:10.1016/j.infrared.2024.105401
摘要

Hyperspectral image have rich spatial and spectral information, and how to fully extract and utilize the features of these two dimensions is a research hotspot in hyperspectral classification methods. At present, the unique convolutional operation and deep feature extraction structure of convolutional neural network enable them to have stronger feature representation capabilities and achieve good results in hyperspectral image classification. However, CNN methods do not assign different weights based on the importance of features in the feature extraction process, making it difficult to effectively utilize key features, and most importantly, using fixed shaped convolution kernel can easily overlook the differences between hyperspectral image features. A hyperspectral image classification method based on deep separable residual attention network is proposed to address the above issues. Firstly, to reduce the correlation between hyperspectral image data and minimize the interference of redundant information, principal component analysis is used to reduce the dimensionality of hyperspectral image. Secondly, a shallow feature extraction module is constructed, which can dynamically adjust the size of the receptive field according to the actual situation of the image, adaptively extract shallow features, and reduce the loss of original image features. Then, a depthwise separable residual attention mechanism module is proposed, based on which features are extracted. Starting from global and local features, contextual information on image features in channel and spatial domains is extracted. Finally, use a multi-scale feature fusion module to fully integrate feature maps at different scales. Using Indian Pines, Pavia University and Botswana as experimental datasets, the overall classification accuracy of this paper's method is 98.47 %, 98.70 %, 98.83 % with only 50, 50, 30 training samples per class. The Kappa coefficient is 98.25 %, 98.27 %, and 98.73 %, respectively. Compared with advanced methods, this method not only has higher classification accuracy, but also fully utilizes key features at various network levels.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wwb完成签到,获得积分10
刚刚
张自信完成签到,获得积分10
1秒前
华仔应助VDC采纳,获得10
1秒前
嘟嘟完成签到,获得积分10
2秒前
卡卡完成签到,获得积分10
2秒前
2秒前
十三发布了新的文献求助10
2秒前
2秒前
3秒前
3秒前
甩看文献发布了新的文献求助10
3秒前
wang完成签到,获得积分10
4秒前
4秒前
4秒前
4秒前
4秒前
LONG完成签到,获得积分10
5秒前
5秒前
甜蜜秋蝶完成签到,获得积分10
5秒前
6秒前
TT发布了新的文献求助10
7秒前
啊实打实发布了新的文献求助10
7秒前
yam001发布了新的文献求助30
8秒前
Stanley完成签到,获得积分10
8秒前
LONG发布了新的文献求助10
8秒前
亮亮发布了新的文献求助50
8秒前
LZQ应助细心的小蜜蜂采纳,获得30
9秒前
艺玲发布了新的文献求助10
9秒前
小二郎应助Seven采纳,获得10
9秒前
设计狂魔完成签到,获得积分10
9秒前
9秒前
10秒前
韭黄发布了新的文献求助10
10秒前
科研小白完成签到,获得积分10
10秒前
11秒前
9℃发布了新的文献求助10
11秒前
甩看文献完成签到,获得积分10
11秒前
11秒前
欣喜书桃关注了科研通微信公众号
12秒前
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762