亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Hyperspectral image classification based on deep separable residual attention network

高光谱成像 残余物 计算机科学 可分离空间 人工智能 图像(数学) 模式识别(心理学) 遥感 计算机视觉 地质学 算法 数学 数学分析
作者
Chao Tu,Wanjun Liu,Linlin Zhao,Tinghao Yan
出处
期刊:Infrared Physics & Technology [Elsevier]
卷期号:140: 105401-105401 被引量:1
标识
DOI:10.1016/j.infrared.2024.105401
摘要

Hyperspectral image have rich spatial and spectral information, and how to fully extract and utilize the features of these two dimensions is a research hotspot in hyperspectral classification methods. At present, the unique convolutional operation and deep feature extraction structure of convolutional neural network enable them to have stronger feature representation capabilities and achieve good results in hyperspectral image classification. However, CNN methods do not assign different weights based on the importance of features in the feature extraction process, making it difficult to effectively utilize key features, and most importantly, using fixed shaped convolution kernel can easily overlook the differences between hyperspectral image features. A hyperspectral image classification method based on deep separable residual attention network is proposed to address the above issues. Firstly, to reduce the correlation between hyperspectral image data and minimize the interference of redundant information, principal component analysis is used to reduce the dimensionality of hyperspectral image. Secondly, a shallow feature extraction module is constructed, which can dynamically adjust the size of the receptive field according to the actual situation of the image, adaptively extract shallow features, and reduce the loss of original image features. Then, a depthwise separable residual attention mechanism module is proposed, based on which features are extracted. Starting from global and local features, contextual information on image features in channel and spatial domains is extracted. Finally, use a multi-scale feature fusion module to fully integrate feature maps at different scales. Using Indian Pines, Pavia University and Botswana as experimental datasets, the overall classification accuracy of this paper's method is 98.47 %, 98.70 %, 98.83 % with only 50, 50, 30 training samples per class. The Kappa coefficient is 98.25 %, 98.27 %, and 98.73 %, respectively. Compared with advanced methods, this method not only has higher classification accuracy, but also fully utilizes key features at various network levels.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小马甲应助cometx采纳,获得10
4秒前
风趣的梦露完成签到 ,获得积分10
10秒前
vinci完成签到,获得积分10
11秒前
淡淡的洋葱完成签到,获得积分10
19秒前
Panacea完成签到 ,获得积分10
20秒前
独特的易形完成签到 ,获得积分10
26秒前
30秒前
jeff完成签到,获得积分10
30秒前
32秒前
开胃咖喱完成签到,获得积分10
33秒前
Huzhu发布了新的文献求助10
39秒前
Tania完成签到,获得积分10
42秒前
50秒前
53秒前
54秒前
cometx发布了新的文献求助10
56秒前
58秒前
花陵完成签到 ,获得积分10
1分钟前
帅气的熊猫完成签到,获得积分10
1分钟前
粽子完成签到,获得积分10
1分钟前
彭于晏应助阿瓜师傅采纳,获得10
1分钟前
1分钟前
不才完成签到,获得积分10
1分钟前
cometx完成签到,获得积分10
1分钟前
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
魏欣娜发布了新的文献求助10
1分钟前
2分钟前
去码头整点薯条完成签到,获得积分10
2分钟前
徐per爱豆完成签到 ,获得积分10
2分钟前
caca完成签到,获得积分0
2分钟前
2分钟前
ADcal完成签到 ,获得积分10
2分钟前
3分钟前
badabadaba关注了科研通微信公众号
3分钟前
3分钟前
3分钟前
badabadaba发布了新的文献求助30
3分钟前
星辰大海应助科研通管家采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
上海破产法庭破产实务案例精选(2019-2024) 500
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5476330
求助须知:如何正确求助?哪些是违规求助? 4577995
关于积分的说明 14363306
捐赠科研通 4505871
什么是DOI,文献DOI怎么找? 2468931
邀请新用户注册赠送积分活动 1456508
关于科研通互助平台的介绍 1430177